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Abstract

This paper provides a comprehensive examination of problem reduction as a cornerstone
technique in computational complexity theory and algorithm design. It begins by defining
problem reduction and elucidating its fundamental importance in understanding the relative
di!culty of computational problems. The paper then delves into the theoretical underpinnings,
formally defining key reduction types such as many-one (Karp), Turing (Cook), polynomial-time,
logarithmic-space, and approximation-preserving reductions. Their roles in classifying problems
into complexity classes like P, NP, NP-complete, and NP-hard are thoroughly analyzed. A sys-
tematic guide to performing reductions is presented, followed by detailed illustrations of classic
reduction examples, including SAT to 3-SAT and 3-SAT to Clique, complete with proofs of
correctness and complexity analyses. The practical utility of problem reduction is showcased
through real-world applications in scheduling, resource allocation, and optimization. Further-
more, the paper addresses the critical aspects of reduction validity, formal correctness proofs,
and common pitfalls encountered in designing reductions. Finally, it explores emerging tools,
such as SAT/ILP solvers and AI-assisted approaches, and discusses future research directions,
including the potential for automated reduction synthesis. The aim is to o”er a rigorous yet
accessible resource for students and researchers in theoretical computer science.
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1 Introduction

Problem reduction stands as a pivotal concept in the landscape of theoretical computer science,
particularly within computability theory and computational complexity theory. At its essence, a
reduction is an algorithmic method for transforming one problem, say Problem A, into another
problem, Problem B.1 This transformation is not merely a procedural exercise; it is a profound
tool that allows for the comparison of the intrinsic computational di!culties of di”erent problems.
If Problem A can be e!ciently reduced to Problem B, the implication is that Problem B is at
least as computationally challenging as Problem A. This ability to establish relative hardness is
fundamental for classifying problems based on the computational resources—such as time and
memory—they require for solution, and for delineating the intricate relationships between various
complexity classes.

The utility of reductions manifests in two primary scenarios: firstly, to devise a solution for a
new problem by converting its instances into instances of a problem for which a solution is already

1References are listed at the end of the paper.
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known; secondly, and perhaps more significantly in complexity theory, to prove that a new problem
is computationally hard by demonstrating that a known hard problem can be reduced to it. This
latter application forms the bedrock of NP-completeness theory.

The general goal of problem reduction is to simplify the approach to complex problems by trans-
forming them into problems that are either already understood, known to be solvable, or possess
well-characterized properties. Intuitively, if an e!cient algorithm exists for solving Problem B, this
algorithm can be leveraged as a subroutine, in conjunction with the reduction, to solve Problem A
e!ciently. This process e”ectively simplifies the task of tackling Problem A by building upon exist-
ing algorithmic solutions or theoretical understanding of Problem B. Problem reduction, therefore,
is a powerful algorithm design technique: it deconstructs a complex problem into a potentially
simpler one, whose solution can then be transformed back to address the original challenge. This
methodology is not just a theoretical construct but a practical approach to problem-solving.

The relevance of problem reduction permeates several critical areas of computer science. In
the theory of NP-completeness, polynomial-time reductions are the defining mechanism for NP-
complete and NP-hard problems. A problem is proven to be NP-complete typically by first showing
it belongs to the class NP and then reducing a known NP-complete problem to it. The seminal
Cook-Levin theorem, which established the Boolean Satisfiability Problem (SAT) as the first NP-
complete problem, fundamentally relied on the concept of reducing any problem in NP to SAT. In
algorithm design, reductions are indispensable. They guide designers by allowing them to adapt
existing algorithms for new, related problems. Conversely, if a problem can be shown to be NP-hard
via reduction, designers understand that finding an exact, e!cient algorithm is unlikely, prompting
a shift towards developing approximation algorithms, heuristics, or identifying tractable special
cases. As Kleinberg & Tardos note, the discovery of NP-completeness is often an “invitation to
begin looking for approximation algorithms.”

In the realm of optimization, specialized reductions known as approximation-preserving reduc-
tions are vital. These reductions help in understanding how well an optimization problem can be
approximated, by relating its approximability to that of another problem for which good approxi-
mation algorithms might exist or for which inapproximability results are known.

Problem reduction is more than just a technique; it serves as a formal language for discussing
and comparing computational di!culty, providing the structural framework for the hierarchy of
complexity classes beyond P. Without reductions, concepts such as NP-hardness or P-completeness
would lack a rigorous mechanism for comparison and definition. The dual utility of reductions is
particularly powerful: they can be employed constructively to solve problems by transforming them
into easier, already solved ones (e.g., solving LCM via GCD), or they can be used to demonstrate
computational hardness through proof by contradiction, as is common in NP-completeness theory.
Furthermore, the P versus NP problem, one of the most profound open questions in computer sci-
ence, is intrinsically linked to polynomial-time reductions. The very definition of NP-completeness
implies that if any single NP-complete problem could be solved in polynomial time, then all prob-
lems in NP could also be solved in polynomial time, due to the transitive nature of these reductions.
As stated in kleinberg-tardos, “if any NP-complete problem can be solved quickly, then every prob-
lem in NP can, because the definition of an NP-complete problem states that every problem in NP
must be quickly reducible to every NP-complete problem.” This underscores how the P versus NP
question revolves around the power and limitations encapsulated by polynomial-time reductions.
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2 Theoretical Foundations of Problem Reduction

The study of problem reduction rests on a solid theoretical framework, employing formal definitions
to ensure precision and rigor. Understanding these foundations is crucial for appreciating the role
of reductions in classifying computational problems.

2.1 Formal Concepts: Many-one Reduction, Turing Reduction, Polynomial-
time Reduction

Three principal types of reductions are central to computational complexity theory:

Many-one Reduction (Karp Reduction, Mapping Reduction): Amany-one reduction from
a problem A to a problem B involves a computable function f that transforms any instance x of
problem A into an instance f(x) of problem B. The defining characteristic is that x is a “yes”
instance of A if and only if f(x) is a “yes” instance of B (denoted x → A ↑↓ f(x) → B). In
this type of reduction, an oracle for problem B is invoked only once, at the very end of the com-
putation, and the answer it provides cannot be subsequently modified. This makes many-one
reductions a more restrictive, or “stronger,” form of reduction compared to Turing reductions.

Formally, if A ↔ #→
1
and B ↔ #→

2
are languages (representing decision problems), a many-one

reduction is a total computable function f : #→
1
↗ #→

2
such that for every string w → #→

1
, it holds

that w → A ↑↓ f(w) → B. If the function f is computable in polynomial time, the reduction
is a polynomial-time many-one reduction, often denoted as A ↘P

m B or simply A ↘p B. These
are also known as Karp reductions.

Turing Reduction (Cook Reduction): A Turing reduction from problem A to problem B con-
ceptualizes an algorithm for A that utilizes an oracle for B. This means problem A can be
solved if one has a method (the oracle) to solve problem B. Unlike many-one reductions, Turing
reductions permit multiple calls to the oracle for B during the computation of A.

Formally, problem A is Turing reducible to problem B (denoted A ↘T B) if an oracle machine—a
Turing machine equipped with a special query tape for the oracle—can decide A given an oracle
for B, halting in a finite number of steps. If the oracle machine itself runs in polynomial time
(excluding the time taken by the oracle calls, which are counted as single steps or according to
the oracle’s complexity if known), it is a polynomial-time Turing reduction, commonly referred
to as a Cook reduction. Turing reductions are more general than many-one reductions; any
many-one reduction is also a Turing reduction, but the converse is not always true.

Polynomial-time Reduction: This is a crucial qualifier for reductions used in complexity the-
ory, particularly concerning NP-completeness. A reduction, whether many-one or Turing, is a
polynomial-time reduction if the algorithm performing the transformation (and any computa-
tion outside oracle calls, in the case of Turing reductions) runs in time that is polynomial in the
size of the input instance of the original problem.

The significance of the polynomial-time constraint is paramount: it ensures that the reduction
process itself does not introduce prohibitive computational cost. If a problem A is polynomial-
time reducible to problem B (A ↘p B or A ↘P

T B), and problem B is solvable in polynomial
time (i.e., B → P ), then problem A is also solvable in polynomial time (A → P ). This property
is fundamental for classifying problems.
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2.2 Reducibility in the Context of P, NP, NP-complete, and NP-hard Problems

Reductions are the primary mechanism for defining and relating key complexity classes:

• P (Polynomial Time): This class comprises decision problems that can be solved by a
deterministic Turing machine in a number of steps bounded by a polynomial function of the
input size. These are generally considered “tractable” problems.

• NP (Nondeterministic Polynomial Time): This class consists of decision problems for
which a “yes” answer can be verified in polynomial time by a deterministic Turing machine,
given a suitable “certificate” or “proof”. Equivalently, NP problems are those solvable in
polynomial time by a nondeterministic Turing machine.

• NP-hard: A problem H is NP-hard if every problem L in NP can be polynomial-time
reduced to H (formally, L ↘p H for all L → NP ). NP-hard problems are therefore at least as
di!cult as any problem in NP. An NP-hard problem does not necessarily have to be in NP
itself; its solutions might not be verifiable in polynomial time.

• NP-complete (NPC): A problem C is NP-complete if it satisfies two conditions:

(a) C → NP (i.e., its solutions can be verified in polynomial time).

(b) C is NP-hard (i.e., every problem in NP is polynomial-time reducible to C).

NP-complete problems are considered the “hardest” problems within NP. A polynomial-time
algorithm for any single NP-complete problem would imply P = NP , meaning all problems
in NP could be solved in polynomial time.

The standard methodology to prove that a new problem L is NP-complete involves:

1. Demonstrating that L → NP (i.e., showing that a given solution can be verified quickly).

2. Selecting a known NP-complete problem L↑.

3. Constructing a polynomial-time reduction from L↑ to L (i.e., proving L↑ ↘p L). The tran-
sitivity property of polynomial-time reductions (X ↘p Y and Y ↘p Z =↓ X ↘p Z) then
ensures that L is NP-hard.

2.3 Why Reductions are Key to Understanding Problem Complexity

Reductions are fundamental to understanding problem complexity for several reasons:

• Establishing Relative Di!culty: Reductions provide a formal way to compare the com-
putational di!culty of problems. If problem A can be reduced to problem B using an e!cient
reduction (e.g., polynomial-time), it implies that A is “no harder than” B. Conversely, B
is “at least as hard as” A. This allows for a partial ordering of problems based on their
complexity.

• Defining Complexity Classes and Completeness: The concept of reducibility is integral
to defining complexity classes beyond P and identifying “complete” problems for these classes.
A complete problem for a class C (e.g., NP-complete for NP, PSPACE-complete for PSPACE)
is a problem in C to which all other problems in C can be reduced under an appropriate
notion of reduction (e.g., polynomial-time many-one reductions for NP-completeness). These
complete problems e”ectively represent the “hardest” problems in their respective classes.
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• The Critical Role of the Polynomial-Time Constraint: The constraint that reductions
(in the context of P and NP ) must be polynomial-time is crucial. An ine!cient reduction,
such as one taking exponential time, would not preserve the notion of “e!cient solvability.”
If transforming an instance of A to an instance of B takes exponential time, then even if B
could be solved in polynomial time, the overall algorithm for A (via the reduction and solving
B) would still be exponential. Such a reduction would o”er no meaningful insight into A’s
tractability relative to B’s within the P vs. NP framework. The polynomial-time constraint
ensures that the reduction itself does not become the computational bottleneck.

• Implications for Undecidability: The logic of reducibility extends to undecidable prob-
lems. As Sipser notes, if problem A is undecidable and A is reducible to B (via a computable
function), then B must also be undecidable. This principle is a primary method for proving
new problems to be undecidable.

A common source of error in hardness proofs is mistaking the direction of the reduction. To
demonstrate that a problem Y is NP-hard, one must reduce a known NP-hard problem X to Y
(i.e., show X ↘p Y ). This establishes that if Y were solvable in polynomial time, then X would
also be solvable in polynomial time, contradicting X’s NP-hardness. Reducing Y to X (Y ↘p X)
only shows that Y is no harder than X, which is uninformative if X is already known to be hard.

The choice of “polynomial time” as the benchmark for e!cient reductions is not arbitrary. It
is chosen because the class P represents problems considered e!ciently solvable, and polynomial-
time functions possess the desirable property of closure under composition. If a reduction f from
problem A to problem B takes O(nk) time, and an algorithm for B takes O(mj) time (where m
is the size of f(input to A)), and the size of f(input to A) is polynomially bounded by the size of
the input to A, then the composite algorithm for A remains polynomial. This ensures that the
reduction itself does not obscure the complexity relationship between A and B.

While Cook (Turing) reductions are more general, Karp (many-one) reductions are predomi-
nantly used for NP-completeness proofs. This preference stems from the fact that Karp reductions
more directly preserve membership in NP. If A ↘P

m B via function f , and B → NP , then to verify an
instance x → A, one can compute f(x) in polynomial time and then use the polynomial-time verifier
for B on f(x). This makes Karp reductions more e”ective for delineating finer distinctions between
classes like NP and co-NP, as they maintain a tighter structural relationship between instances.

3 Types of Reductions

Computational complexity theory employs various types of reductions, each tailored to specific
analytical goals and complexity classes. Understanding their distinctions, advantages, and typical
use-cases is essential.

3.1 Polynomial-time Reductions

As previously introduced, polynomial-time reductions are paramount in the study of NP-completeness
and related complexity classes.

Definition: A transformation from problem A to problem B that is computable by a deter-
ministic algorithm in time polynomial in the size of A’s input.

Significance: Their primary significance lies in the property that they preserve polynomial-
time solvability: if A ↘p B and B → P , then A → P . This makes them the standard tool for
classifying problems within the P vs. NP landscape.

Subtypes:
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• Polynomial-time many-one (Karp) reduction (A ↘P
m B or A ↘p B): An instance x of A is

mapped to an instance f(x) of B such that x → A ↑↓ f(x) → B, where f is computable in
polynomial time. The oracle for B is e”ectively used only once at the end. This is the most
common type of reduction used in NP-completeness proofs due to its structural preservation.

• Polynomial-time Turing (Cook) reduction (A ↘P
T B): An algorithm for A makes a polynomial

number of calls to an oracle for B, and performs a polynomial amount of computation outside
these calls. This is a more general notion.

Advantages: Polynomial-time reductions are well-understood, possess the critical property of
transitivity (if A ↘p B and B ↘p C, then A ↘p C), and form the backbone of NP-completeness
theory.

Typical Use-Cases:

• Proving NP-hardness and NP-completeness for decision problems.

• Defining completeness for other complexity classes such as PSPACE-complete and EXPTIME-
complete languages.

3.2 Turing Reductions (General Concept)

Turing reductions o”er a broader framework for relating problem solvability.
Definition: Problem A is Turing reducible to problem B (A ↘T B) if an oracle machine can

solve A using a hypothetical subroutine (oracle) for B, completing in a finite number of steps. The
complexity of the reduction itself (the oracle machine’s computation excluding oracle calls) can
vary.

Properties: This is a more general notion than many-one reduction, as it allows the algorithm
for A to query the oracle for B multiple times and perform intermediate computations based on
the oracle’s answers. A problem is always Turing equivalent to its complement.

Advantages: Turing reductions can relate problems where a direct instance-to-instance map-
ping (as in many-one reductions) is di!cult or seems unnatural. They are powerful for establishing
decidability: if A is Turing reducible to B and B is decidable, then A is also decidable.

Typical Use-Cases:

• Establishing decidability or undecidability of problems.

• In complexity theory, Cook reductions (polynomial-time Turing reductions) are used to show
that if B → P , then A → P . However, they are less frequently used for fine-grained NP-
completeness classifications than Karp reductions because their generality can sometimes
obscure the structural relationships between problems, for instance, by not distinguishing NP
from co-NP as e”ectively as many-one reductions.

3.3 Log-space Reductions

Log-space reductions provide a finer tool for analyzing complexity classes within P .
Definition: A many-one reduction where the transformation function f is computable by a

deterministic Turing machine using only O(log n) workspace on its work tape, where n is the input
size. The machine has a read-only input tape and a write-only output tape where the output head
cannot move left.

Properties: Log-space reductions are inherently polynomial-time reductions because a ma-
chine with logarithmic space can only run for a polynomial number of steps before repeating a
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configuration. They are thus more restrictive than general polynomial-time reductions. The class
L (problems solvable in deterministic log-space) is closed under log-space reductions: if A ↘L B
and B → L, then A → L.

Advantages: They are essential for defining completeness for complexity classes within P ,
such as L (Logarithmic Space), NL (Nondeterministic Logarithmic Space), and for defining P -
complete problems. General polynomial-time reductions are too coarse for this purpose, as almost
all non-trivial problems in P are polynomial-time reducible to each other, rendering the notion of
P -completeness under polynomial-time reductions uninformative.

Typical Use-Cases:

• Proving P -completeness (e.g., the Circuit Value Problem is P -complete under log-space re-
ductions).

• Studying the internal structure of P and the relationships between L and NL (e.g., if any
NL-complete problem is shown to be in L via a log-space reduction, then L = NL).

3.4 Approximation-preserving Reductions

These reductions are designed for optimization problems, focusing on how the quality of an ap-
proximate solution is maintained during the transformation.

Definition: An approximation-preserving reduction transforms an instance x of an optimiza-
tion problem A into an instance f(x) of an optimization problem B, and a solution y↑ for f(x)
back into a solution y for x using a function g. The key is that g must preserve some guarantee
on the solution’s performance, typically measured by the approximation ratio (the ratio of the
achieved solution value to the optimal solution value). Both f and g are usually required to be
polynomial-time computable.

Types:

• Strict Reduction: The approximation ratio for A is no worse than for B: RA(x, y) ↘
RB(f(x), y↑). Preserves membership in PTAS and APX.

• L-reduction (Linear Reduction): Defined by two linear relationships: OPTB(f(x)) ↘ ω ·
OPTA(x) and |costA(g(y↑))≃OPTA(x)| ↘ ε · |costB(f(x))≃ costB(y↑)| for positive constants
ω,ε. An L-reduction implies a PTAS reduction and preserves membership in APX for mini-
mization problems.

• PTAS-reduction: If problem B has a Polynomial Time Approximation Scheme (PTAS), then
problem A also has a PTAS. For any desired approximation ratio 1 + ϑ for A, there’s a
corresponding ratio 1 + ϖ(ϑ) for B such that if B can be (1 + ϖ)-approximated, A can be
(1 + ϑ)-approximated. APX-completeness is defined using PTAS-reductions.

• AP-reduction (Approximation Preserving Reduction): A specific type of PTAS reduction used
to define completeness in classes like Log-APX and Poly-APX.

• Other types include: E-reduction (generalizes strict reduction, preserves membership in
PTAS, APX, Log-APX, Poly-APX), Gap-preserving reductions (focus on preserving the gap
between optimal and approximate solutions, useful for inapproximability results).

Advantages: These reductions are crucial for establishing hardness of approximation results.
If problem A is known to be hard to approximate within a certain factor ω, and there is an
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approximation-preserving reduction from A to B, then B also inherits a corresponding hardness of
approximation.

Typical Use-Cases:

• Classifying optimization problems into approximability classes like APX (constant-factor ap-
proximable) and PTAS (approximable to any desired constant factor in polynomial time for
fixed factor).

• Proving that certain problems are APX-hard or APX-complete, indicating they likely do not
admit a PTAS unless P = NP .

The choice among these reduction types is dictated by the specific properties one wishes to
analyze or preserve. For instance, many-one reductions are more restrictive than Turing reductions,
making them better for finer distinctions between complexity classes. Log-space reductions are even
more restrictive, necessary for studying classes within P . The “appropriate notion of reduction
depends on the complexity class being studied.” This context-dependency highlights a trade-o”:
more general reductions like Turing reductions can relate a wider array of problems but might not
be suitable for nuanced classifications where more restrictive forms like Karp or log-space reductions
excel.
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3.5 Comparison Table of Reduction Types

To provide a consolidated overview, the following table compares the key features of the discussed
reduction types:

Table 1: Comparison of Di”erent Reduction Types

Feature Many-one Turing Log-space L-reduction PTAS-
reduction

Transformation f : A ↗ B Algorithm for
A using B

f : A ↗ B f : A ↗ B, g :
SolB ↗ SolA

f : A ↗ B, g :
SolB ↗ SolA

Oracle Calls 1 (end) Polynomial
many

1 (end) 1 (end) for f 1 (end) for f

Resource Constraint Poly time Poly time Log space Poly time Poly time
(may depend
on ϑ)

Preserves Solution Exact Yes/No Exact Yes/No Exact Yes/No Approx. Ra-
tio (linear)

Approx. Ra-
tio (PTAS)

Key Classes NP-complete,
etc.

Decidability,
P vs NP

P -complete,
L, NL

APX-
hardness,
PTAS

PTAS, APX-
complete

Relative Strength Stronger than
Turing

Weaker than
Many-one

Stronger than
Poly-time

Strong (spe-
cific approx.)

Specific to
PTAS

Transitivity Yes Yes Yes Yes (approx.
classes)

Yes (PTAS
class)

Primary Goal Classify deci-
sion problems

Relate
solvability
broadly

Fine-grained
in P

Classify by
approximabil-
ity

Determine
PTAS exis-
tence

This table facilitates a quick understanding of how each reduction type di”ers in its mechanism,
stringency, and primary area of application within computational complexity.

4 General Process of Performing a Reduction

Performing a problem reduction, especially for proving NP-completeness or other hardness results,
is a structured process that requires careful design and rigorous proof. The general steps are
outlined below, drawing from established practices in algorithm design and complexity theory.

4.1 Analyze Source Problem P

The first step is to thoroughly understand the source problem P . If the goal is to prove P is hard,
then P is the new problem whose complexity is under investigation. If the goal is to solve P , then P
is the problem for which a solution is sought by leveraging another problem. This analysis involves:

• Formal Definition: Clearly define P , including its input instances (e.g., graphs, numbers,
formulas) and what constitutes a “yes” instance for a decision problem, or an optimal/valid
solution for an optimization/search problem.
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• Structural Elements and Constraints: Identify the key components, properties, and
constraints inherent in problem P . For instance, in a graph problem, this includes vertices,
edges, paths, cycles, connectivity, degree constraints, etc. For a satisfiability problem, it
involves variables, literals, clauses, and logical connectives.

4.2 Choose Target Problem P ↑

The selection of the target problem P ↑ is critical and depends on the objective of the reduction:

• Proving Hardness: If the aim is to prove that problem P is NP-hard, then P ↑ must be a
known NP-complete problem (e.g., 3-SAT, CLIQUE, Vertex Cover, Hamiltonian Cycle). The
choice of P ↑ is often guided by structural similarities between P and P ↑; a P ↑ that shares
some conceptual elements with P can make the transformation design more intuitive and
manageable.

• Solving a Problem: If the aim is to solve problem P , then P ↑ should be a problem for which
an e!cient algorithm (or a good approximation algorithm, or a powerful solver) is already
known. The reduction then provides a way to solve P using the existing solution for P ↑.

4.3 Design a Transformation Function f : P ↗ P ↑ (Instance Mapping)

This is often the most intellectually demanding part of the reduction. The transformation function
f must take an arbitrary instance I of problem P and map it to a specific instance I ↑ = f(I) of
problem P ↑.

• Mapping Components: The core of the design involves establishing a correspondence
between the structural elements and constraints of instance I and those of instance I ↑.

• Gadget Construction: For many reductions, especially when P and P ↑ are from di”erent
domains (e.g., logic to graphs), this step involves inventing “gadgets.” Gadgets are specific
structures constructed within the instance I ↑ of P ↑ that are designed to mimic the behavior
or enforce the constraints of components from instance I of P . For example, in reductions
from 3-SAT, variable gadgets might ensure consistent truth assignments, and clause gadgets
might ensure that each clause is satisfied.

• Parameter Setting: The transformation must also define any necessary parameters for in-
stance I ↑. For example, in a reduction to CLIQUE, the target clique size k must be determined
based on the properties of instance I.

4.4 Prove Solution Equivalence (Correctness of Reduction)

This is the cornerstone of the reduction’s validity. It must be rigorously proven that an instance I
of problem P has a solution (or is a “yes” instance) if and only if the transformed instance I ↑ = f(I)
of problem P ↑ has a solution (or is a “yes” instance). This proof typically involves two directions:

• Forward Direction (↓): If I has a solution, then f(I) has a solution. This part of the
proof usually involves taking an arbitrary solution (or certificate of a “yes” instance) for I
and showing how to use it to construct or demonstrate a solution for f(I).
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• Backward Direction (↑ or Contrapositive): If f(I) has a solution, then I has a solution.
This part often requires more care. It involves taking an arbitrary solution for an instance
f(I) (that was generated by the transformation f) and showing how to derive a solution for
the original instance I. It is crucial here that this direction only needs to hold for instances of
P ↑ that are in the range of the function f ; one does not need to consider arbitrary instances
of P ↑.

4.5 Analyze Time/Space Complexity of Transformation f

The algorithm that implements the transformation function f must itself be e!cient, according to
the type of reduction being employed.

• Polynomial Time for NP-Completeness: For reductions used in NP-completeness proofs
(A ↘p B), the transformation f must be computable in time polynomial in the size of the
input instance I (denoted |I|). This ensures that the reduction itself is not the source of
intractability.

• Output Size: The size of the generated instance I ↑ = f(I) must also be polynomially
bounded by |I|. If |I ↑| were exponentially larger than |I|, then even a polynomial-time algo-
rithm for P ↑ on I ↑ would be exponential in terms of |I|.

• Logarithmic Space for P-Completeness: For log-space reductions (A ↘L B), the trans-
formation f must be computable using only O(log |I|) additional workspace.

The design of the transformation function f , particularly the invention of “gadgets,” is often
where the ingenuity of a reduction lies. These gadgets must accurately translate the logic and
constraints of the source problem into the language of the target problem. For example, variable
gadgets in 3-SAT to Hamiltonian Cycle reductions ensure that a path through the gadget corre-
sponds to a consistent truth assignment for that variable, while clause gadgets ensure that any
Hamiltonian cycle must satisfy the corresponding clause.

A subtle but critical aspect of proving solution equivalence is its asymmetric nature. While the
“if and only if” statement appears symmetric, the proof for the backward direction (P ↑ solution
↓ P solution) only needs to consider solutions to instances of P ↑ that could have been generated
by the transformation function f . It does not need to hold for arbitrary instances of P ↑. This
restriction can significantly simplify the backward proof, as one can exploit the specific structure
imposed by f .

Finally, it is essential to remember that the transformation f is itself an algorithm. Its compu-
tational cost (time and space) is a critical parameter. If this cost is too high (e.g., exponential time
for a polynomial-time reduction), the reduction fails to establish the desired relationship between
the complexities of P and P ↑. The reduction’s complexity must be low enough not to dominate the
complexity of solving the target problem or the established hardness of the source problem.
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Instance I
of P

Instance I→

of P →

Solution S→

for I→

Solution S
for I

Transformation f

Oracle/Solver for P →

Map solution back (if needed)

Figure 1: General schematic of problem reduction. An instance I of problem P is transformed by
f into an instance I ↑ of problem P ↑. A solver for P ↑ yields solution S↑, which may then be mapped
back to a solution S for P . For decision problems, S↑ often directly gives the yes/no answer for I.

4.6 Pseudocode for General Reduction (Decision Problems)

The following pseudocode illustrates the conceptual application of a reduction for solving a decision
problem P , assuming an oracle for P ↑ exists.

FUNCTION Solve_P_via_Reduction_to_P_prime(instance_I_of_P):
// Step 1: Analyze source problem P (implicit in understanding instance_I_of_P)
// Step 2: Target problem P’ is known (e.g., a known NP-complete problem or a problem with a
known solver)

// Step 3: Transform instance I of P to instance I’ of P’
// This function embodies the transformation logic, including gadget construction.
instance_I_prime_of_P_prime = Transform_P_to_P_prime(instance_I_of_P)

// Assume Transform_P_to_P_prime runs in polynomial time (or other required complexity).
// Assume solution equivalence (I is YES iff I’ is YES) has been mathematically proven.

// Use an oracle (or an existing algorithm) to solve the instance of P’
is_I_prime_solution_YES = ORACLE_FOR_P_prime(instance_I_prime_of_P_prime)

// By the equivalence proof, the solution to I’ is the solution to I
IF is_I_prime_solution_YES THEN

RETURN YES // instance_I_of_P is a YES instance
ELSE

RETURN NO // instance_I_of_P is a NO instance
END IF

END FUNCTION

FUNCTION Transform_P_to_P_prime(instance_I_of_P):
// Specific logic for transforming an instance of P to an instance of P’.
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// This involves:
// 1. Deconstructing instance_I_of_P into its core components.
// 2. Creating corresponding components for instance_I_prime_of_P_prime.
// 3. If P and P’ are structurally different, design "gadgets" in P’
// that simulate the constraints and behavior of components in P.
// 4. Setting any necessary parameters for P’ based on I_of_P (e.g., target k for CLIQUE).
//
// Example: If P is 3-SAT and P’ is CLIQUE:
// - For each clause in 3-SAT instance, create 3 vertices in CLIQUE instance.
// - Add edges between vertices based on non-conflicting literals in different clauses.
// - Set target clique size k = number of clauses.
//
// RETURN constructed_instance_I_prime_of_P_prime
// This function must be proven to run in the required time/space complexity.
// For NP-completeness, this must be polynomial time.
// The size of constructed_instance_I_prime_of_P_prime must also be polynomially bounded.
//... implementation details...
// RETURN instance_I_prime
Pass

5 Classic Reduction Examples

This section details several classic polynomial-time many-one reductions that are fundamental to
establishing NP-completeness. For each reduction, the transformation process, a proof of solution
equivalence, and an analysis of the transformation’s complexity are provided. These examples
illustrate the general process described in the previous section.

5.1 SAT ↗ 3-SAT

The Boolean Satisfiability Problem (SAT) asks if a given Boolean formula ϱ has a satisfying truth
assignment. The 3-Satisfiability Problem (3-SAT) is a restricted version where the formula ϱ↑ must
be in 3-Conjunctive Normal Form (3-CNF), meaning it is an AND of clauses, where each clause is
an OR of exactly three distinct literals. The reduction from SAT to 3-SAT shows that even this
restricted version remains NP-complete.

Transformation: Given an arbitrary CNF formula ϱ (any SAT instance can be converted to
CNF in polynomial time without changing satisfiability), the goal is to construct a 3-CNF formula
ϱ↑ such that ϱ is satisfiable if and only if ϱ↑ is satisfiable. The transformation proceeds clause by
clause:

• Clause with 3 literals: If a clause Cj in ϱ already has exactly three literals (e.g., l1⇐l2⇐l3),
it is kept unchanged in ϱ↑.

• Clause with 1 literal: If Cj = (l1), introduce two new (fresh) variables yj1, yj2. Replace
Cj with the conjunction of four 3-literal clauses:

(l1 ⇐ yj1 ⇐ yj2) ⇒ (l1 ⇐ yj1 ⇐ ¬yj2) ⇒ (l1 ⇐ ¬yj1 ⇐ yj2) ⇒ (l1 ⇐ ¬yj1 ⇐ ¬yj2).

This block of clauses is satisfiable if and only if l1 is true.
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• Clause with 2 literals: If Cj = (l1 ⇐ l2), introduce one new variable yj1. Replace Cj with
the conjunction of two 3-literal clauses:

(l1 ⇐ l2 ⇐ yj1) ⇒ (l1 ⇐ l2 ⇐ ¬yj1).

This block is satisfiable if and only if l1 ⇐ l2 is true.

• Clause with m > 3 literals: If Cj = (l1 ⇐ l2 ⇐ · · · ⇐ lm), introduce m ≃ 3 new variables
yj1, yj2, . . . , yj,m↓3. Replace Cj with a chain of m≃ 2 3-literal clauses:

(l1 ⇐ l2 ⇐ yj1) ⇒ (¬yj1 ⇐ l3 ⇐ yj2) ⇒ (¬yj2 ⇐ l4 ⇐ yj3) ⇒ · · · ⇒ (¬yj,m↓3 ⇐ lm↓1 ⇐ lm).

The final formula ϱ↑ is the conjunction of all these new 3-literal clauses generated from each
clause of ϱ. Each set of new variables yji is unique to the clause Cj it helps transform.

Proof of Equivalence (SAT ↑↓ 3-SAT): Let ϱ be the original CNF formula and ϱ↑ be the
transformed 3-CNF formula. We need to show that ϱ is satisfiable if and only if ϱ↑ is satisfiable.

• ↓ If ϱ is satisfiable, then ϱ↑ is satisfiable:

Assume ϱ is satisfied by some truth assignment A to its original variables. We extend A to
an assignment A↑ (by assigning values to the new y variables) such that ϱ↑ is satisfied.

For each clause Cj :

– If Cj had 3 literals, it is in ϱ↑ and satisfied by A.

– If Cj = (l1) and l1 is TRUE under A, the block of four clauses is satisfied regardless of
yj1, yj2.

– If Cj = (l1 ⇐ l2) and l1 ⇐ l2 is TRUE under A, the two clauses are satisfied regardless of
yj1.

– If Cj has m > 3 literals and is TRUE under A, assign the yji variables to satisfy the
chain as follows:

∗ If l1 or l2 is TRUE, set all yji to FALSE.

∗ If lm↓1 or lm is TRUE, set all yji to TRUE.

∗ Otherwise, set yj1, . . . , yj,p↓2 to TRUE and yj,p↓1, . . . , yj,m↓3 to FALSE, where lp is
the TRUE literal with 2 < p < m≃ 1.

Thus, ϱ↑ is satisfiable.

• ↑ If ϱ↑ is satisfiable, then ϱ is satisfiable:

Assume ϱ↑ is satisfied by some truth assignment A↑. Restrict A↑ to the original variables of
ϱ.

For each clause Cj :

– If Cj had 3 literals, it is satisfied by A↑.

– If Cj = (l1), the block of four clauses is satisfied only if l1 is TRUE.

– If Cj = (l1 ⇐ l2), the two clauses are satisfied only if l1 ⇐ l2 is TRUE.

– If Cj has m > 3 literals, the chain of clauses is satisfied only if at least one literal li is
TRUE; otherwise, a contradiction arises in the chain.

Therefore, every original clause Cj is satisfied by the assignment restricted to original vari-
ables, so ϱ is satisfiable.
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Complexity of Transformation: For a clause of length 1, we add 2 new variables and 4 new
clauses.

For a clause of length 2, we add 1 new variable and 2 new clauses.
For a clause of length m > 3, we add m≃ 3 new variables and m≃ 2 new clauses.
If the original formula ϱ has N clauses and total length L (sum of literals in all clauses), the

number of new variables and clauses in ϱ↑ is polynomial in N and L. Each step is a simple syntactic
replacement. Thus, the transformation from ϱ to ϱ↑ can be performed in polynomial time.

5.2 3-SAT ↗ CLIQUE

The CLIQUE problem asks if a given graph G contains a clique (a fully connected subgraph)
of size at least k. This reduction shows 3-SAT is reducible to CLIQUE, establishing CLIQUE’s
NP-completeness.

Transformation: Let ϱ = C1 ⇒ C2 ⇒ · · · ⇒ Ck be a 3-CNF formula with k clauses. Each clause
Cj is of the form (lj1 ⇐ lj2 ⇐ lj3). We construct an undirected graph G = (V,E) as follows:

• Vertices (V ): For each clause Cj , create three vertices vj1, vj2, vj3. Each vertex vji corre-
sponds to the literal lji in clause Cj . Thus, G has 3k vertices organized into k groups of
three.

• Edges (E): Add an edge between two vertices vji (from clause Cj , literal lji) and vpq (from
clause Cp, literal lpq) if and only if:

1. They belong to di”erent clauses: j ⇑= p.

2. Their corresponding literals are not contradictory, i.e., lji is not the negation of lpq.

The CLIQUE problem instance is then (G, k), asking if G contains a clique of size k.

Proof of Equivalence (3-SAT ↑↓ k-CLIQUE):

• ↓ If ϱ is satisfiable, then G has a k-clique:

Suppose ϱ has a satisfying truth assignment. For each clause Cj , choose exactly one vertex
vji corresponding to a literal lji that is TRUE under the assignment. Let V ↑ be the set of
these k vertices.

We claim V ↑ forms a k-clique in G:

For any two distinct vertices in V ↑, they come from di”erent clauses and their literals are
both TRUE, so they cannot be negations of each other. By construction, there is an edge
between them. Hence, V ↑ is a k-clique.

• ↑ If G has a k-clique, then ϱ is satisfiable:

Suppose G has a k-clique K ↑. Since there are no edges between vertices within the same
clause group, the k vertices in K ↑ must come from distinct clauses, exactly one vertex per
clause.

Construct a truth assignment by setting each variable to TRUE or FALSE according to the
literals corresponding to the vertices in K ↑. This assignment is consistent because no two
vertices in K ↑ correspond to contradictory literals (otherwise, no edge would connect them).

This assignment satisfies ϱ since each clause has at least one literal set to TRUE.
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Complexity of Transformation: The graph G has 3k vertices. The number of possible pairs
of vertices is O(k2). For each pair, checking the conditions for adding an edge takes constant time.
Thus, constructing G takes polynomial time in the size of ϱ.

5.3 Subset Sum ↗ 0-1 Knapsack (Decision Problem)

The Subset Sum problem (SS) asks if a subset of a given set of integers sums to a target value T .
The 0-1 Knapsack problem (decision version, KS) asks if a subset of items, each with a weight and
a value, can be chosen such that their total weight is within a capacity W and their total value
meets a target profit P . Subset Sum is a special case of Knapsack.

Transformation: Given an instance of Subset Sum: a set of n positive integers S = {a1, a2, . . . , an}
and a target sum T .

Construct an instance of the 0-1 Knapsack problem as follows:

• Items: For each integer ai → S, create a corresponding item i.

• Weights: For each item i, set its weight wi = ai.

• Values: For each item i, set its value vi = ai.

• Knapsack Capacity: Set the knapsack capacity W = T .

• Target Profit: Set the minimum required total profit P = T .

The Knapsack instance asks: Is there a subset of items I ↑ such that
∑

i↔I→ wi ↘ W and
∑

i↔I→ vi ⇓
P?

Proof of Equivalence (SS ↑↓ KS):

• ↓ If the Subset Sum instance has a solution, then the constructed Knapsack instance has a
solution:

Assume there exists a subset Ssub ↔ S such that
∑

aj↔Ssub
aj = T .

Consider the set of items Isub corresponding to Ssub. The total weight and value of Isub are
both T , satisfying the knapsack constraints.

• ↑ If the constructed Knapsack instance has a solution, then the Subset Sum instance has a
solution:

Assume there exists a subset of items I ↑ such that
∑

i↔I→ wi ↘ W and
∑

i↔I→ vi ⇓ P .

Substituting the constructed values:
∑

i↔I→
ai ↘ T,

∑

i↔I→
ai ⇓ T,

which implies
∑

i↔I→ ai = T .

Hence, the corresponding subset S↑
sub

solves the Subset Sum problem.

Complexity of Transformation: The transformation involves creating n items and assigning
their weights and values based directly on the n input integers. The capacity and target profit are
also set directly. This process takes O(n) time, which is polynomial in the size of the Subset Sum
input.
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5.4 Hamiltonian Path ↗ Traveling Salesman Problem (Decision Version)

The Hamiltonian Path (HP) problem asks if there’s a path in a graph G that visits every vertex
exactly once (optionally between specified start s and end t vertices). The Traveling Salesman
Problem (TSP, decision version) asks if there’s a tour in a weighted graph G↑ that visits every
vertex exactly once with total weight at most K. This reduction shows HP is reducible to TSP,
contributing to TSP’s NP-completeness.11 We will reduce Hamiltonian Cycle (HC) to TSP, as it’s
a common variant; HP can be reduced to HC.

Transformation (Hamiltonian Cycle to TSP): Given an instance of Hamiltonian Cycle:
an unweighted graph G = (V,E) with n = |V | vertices. Construct an instance of the TSP (decision
version): a complete graph G↑ = (V,Eall) with the same set of n vertices, edge weights w(u, v), and
a target tour length K.

• Vertices: The set of cities in G↑ is identical to the set of vertices V in G.

• Edge Weights: For every pair of distinct vertices u, v → V :

– If the edge (u, v) exists in E (the original graph G), assign weight w(u, v) = 0 in G↑.
(Some sources use 1, e.g.11).

– If the edge (u, v) does not exist in E, assign weight w(u, v) = 1 in G↑. (If using 1 for
existing edges, use a large M > n here, e.g., n+ 1 or 2 if K = n11).

• Target Tour Length: Set K = 0 (if using 0/1 weights as above) or K = n (if using 1/M
weights). Let’s use w(u, v) = 0 for (u, v) → E and w(u, v) = 1 for (u, v) /→ E, with K = 0..54

Proof of Equivalence (HC ↑↓ TSP tour of length K = 0):

• (↓) If G has a Hamiltonian Cycle, then G↑ has a TSP tour of total weight 0:

– Let H = (v1, v2, . . . , vn, v1) be a Hamiltonian Cycle in G. This cycle consists of n edges,
all of which are present in E.

– In the constructed TSP instance G↑, these n edges (v1, v2), (v2, v3), . . . , (vn, v1) all have
weight 0 according to our assignment rule.

– This sequence of edges forms a tour in G↑ that visits every vertex exactly once, and its
total weight is

∑
w(vi, vi+1) = n⇔ 0 = 0.

– Since this total weight 0 ↘ K (as K = 0), the TSP instance has a ”yes” solution..54

• (↑) If G↑ has a TSP tour of total weight 0, then G has a Hamiltonian Cycle:

– Suppose there exists a tour in G↑ that visits every vertex exactly once and has a total
weight of 0 (since K = 0 and weights are non-negative, the tour must have exactly
weight 0).

– A tour visiting n vertices must consist of exactly n edges.

– Since all edge weights in G↑ are either 0 or 1, for the total weight of n edges to be 0,
every edge in this tour must have a weight of 0.

– An edge (u, v) in G↑ has weight 0 if and only if (u, v) was an edge in the original graph
G.

– Therefore, the TSP tour consists entirely of edges that were present in G. Since this
tour visits every vertex in G exactly once and forms a cycle, it is a Hamiltonian Cycle
in G..54
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Complexity of Transformation: The graph G↑ is a complete graph on n vertices, so it has
n(n ≃ 1)/2 edges. Assigning weights to these edges involves checking for each pair (u, v) whether
(u, v) → E. This takes polynomial time, typically O(n2) or O(n+m) if adjacency list of G is used
(where m = |E|). The construction is polynomial in the size of G..54

Diagram: An illustration would show an example graph G. Then, the corresponding complete
graph G↑ would be shown, with edges from G highlighted or labeled with weight 0, and new edges
(not in G) labeled with weight 1. A Hamiltonian cycle in G would map to a 0-cost tour in G↑.

A B

CD

A TSP B TSP

C TSPD TSP

Figure 2: Example of HC to TSP reduction. If G has HC A-B-C-D-A, then G↑ has a tour A TSP-
B TSP-C TSP-D TSP-A TSP of cost 0 (assuming these edges from G get weight 0, others get
weight 1). Target K = 0.

The reduction from SAT to 3-SAT is foundational because the structured nature of 3-SAT
(clauses of fixed length 3) makes it a more convenient starting point for many subsequent re-
ductions, particularly to graph-based problems like CLIQUE or Vertex Cover. These subsequent
reductions often rely on constructing ”gadgets” – small, specialized components in the target prob-
lem’s instance (e.g., graph structures) that simulate the behavior of elements (variables, clauses)
from the 3-SAT formula.47 The correctness of such reductions hinges critically on how accurately
these gadgets enforce the logical constraints of the 3-SAT instance. For example, in the 3-SAT
to CLIQUE reduction, vertex triples represent clauses, and edge constraints ensure that selected
literals for a clique correspond to a consistent and satisfying truth assignment.

It’s also important to note that these reductions typically target the decision versions of opti-
mization problems (e.g., ”is there a TSP tour of cost ↘ K?” rather than ”find the minimum cost
TSP tour”). Proving the decision version NP-complete implies that the corresponding optimization
version is NP-hard.10

Visual Map of NP-Completeness Reductions: A highly valuable educational tool is a
visual map illustrating the web of reductions among NP-complete problems. Such a diagram
would feature nodes representing key NP-complete problems (e.g., CIRCUIT-SAT, SAT, 3-SAT,
CLIQUE, INDEPENDENT-SET, VERTEX-COVER, HAMILTONIAN-CYCLE, TSP, SUBSET-
SUM, PARTITION, 3-COLOR). Directed edges would connect these problems, with an arrow from
problem P1 to P2 signifying that P1 is commonly reduced to P2 to establish P2’s NP-completeness.
For instance, a common chain depicted is: CIRCUIT-SAT ↗ SAT ↗ 3-SAT ↗ CLIQUE (or
VERTEX-COVER or INDEPENDENT-SET). From VERTEX-COVER, one might see a reduction
to HAMILTONIAN-CYCLE, which in turn reduces to TSP. Another branch could show 3-SAT ↗
SUBSET-SUM. Such a map underscores the interconnectedness of these problems and the pivotal
role of a few ”central” problems like 3-SAT as starting points for many proofs.6 While any NP-
complete problem can theoretically be reduced to any other, the map highlights the historically
established and pedagogically useful reduction pathways.
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6 Real-World Reduction Applications

Problem reduction is not merely a theoretical construct for classifying abstract problems; it is a
powerful practical tool used to model and solve a wide array of real-world challenges. By trans-
forming complex, domain-specific problems into well-understood computational problems like graph
coloring, maximum flow, or integer programming, practitioners can leverage existing algorithms,
solvers, and theoretical insights.

6.1 Scheduling ↗ Graph Coloring

Many scheduling scenarios involve assigning entities (e.g., tasks, events, exams) to limited resources
(e.g., time slots, rooms, frequencies) while avoiding conflicts. Such problems can often be elegantly
modeled using graph coloring.68

Mapping Process:

• Vertices: Each task, exam, course, or other schedulable entity is represented as a vertex in
a graph.

• Edges: An edge is drawn between two vertices if their corresponding entities are in conflict
and cannot be assigned the same resource simultaneously. For example, if two exams share
students, an edge connects them. If two university courses are taught by the same professor
or require the same specialized classroom, an edge would link them.

• Colors: The available resources, such as distinct time slots, specific rooms, or communication
frequencies, are represented by colors.

• Solution via Coloring: A valid k-coloring of this graph assigns a ”color” (resource) to
each ”vertex” (task) such that no two adjacent vertices (conflicting tasks) receive the same
color. The primary goal is often to find the minimum number of colors required, known as
the graph’s chromatic number ς(G). This minimum number corresponds to the minimum
number of time slots, rooms, or frequencies needed to schedule all entities without conflict.68

Simplified Example: Exam Timetabling A classic application is university exam timetabling.68

• Vertices: Each course exam is a vertex.

• Edges: An edge connects two exam vertices if there is at least one student enrolled in both
corresponding courses, meaning these exams cannot be scheduled at the same time.

• Colors: Each available time slot in the examination period is a distinct color.

• Valid Schedule: A k-coloring assigns each exam to one of k time slots. The coloring
ensures that no two exams connected by an edge (i.e., having common students) are assigned
the same time slot. The minimum k (the chromatic number) represents the shortest possible
examination period. The NIST paper 68 explicitly details this application. Another example
includes scheduling the Big Ten Conference college football season, where teams are nodes,
games are edges to be colored by weeks, ensuring no team plays more than one game per
week.70
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6.2 Resource Allocation ↗ Max-Flow / Matching

Problems involving the optimal assignment of a set of resources to a set of consumers or tasks,
under various constraints, frequently lend themselves to modeling as maximum flow or maximum
bipartite matching problems.72

Bipartite Matching via Max-Flow: A common scenario is assigning one set of entities to
another, such as workers to jobs, or doctors to hospital shifts.

• Mapping: Given a bipartite graph G = (L↖R,E), where L might represent workers and R
tasks, and an edge (u, v) indicates worker u → L is capable of performing task v → R.

• Construct a flow network: Add a global source s and a global sink t.

– For each worker u → L, add a directed edge from s to u with capacity 1 (each worker
can do at most one job in this simple model).

– For each task v → R, add a directed edge from v to t with capacity 1 (each task can be
assigned to at most one worker).

– For each original edge (u, v) → E in the bipartite graph, add a directed edge from u to
v with capacity 1 (worker u can be assigned to task v).

• Solution: The value of the maximum flow from s to t in this constructed network is equal
to the maximum number of assignments (the size of the maximum matching) in the original
bipartite graph G. An integer-valued maximum flow (guaranteed by algorithms like Ford-
Fulkerson if capacities are integers) will saturate edges corresponding to the assignments
made.72

Simplified Example: Job Applicant Assignment: Applicants are nodes in L, available
positions are nodes in R. An edge (u, v) exists if applicant u is qualified for position v. A maximum
matching finds the largest number of applicants that can be assigned to suitable positions, one
applicant per position and one position per applicant.72

General Resource Allocation: More complex resource allocation scenarios, such as dis-
tributing divisible goods through a supply chain with capacity constraints on routes, or allocating
bandwidth in communication networks, can be modeled using more general maximum flow formu-
lations, potentially with non-unit capacities or multiple sources/sinks.73

6.3 Job-Shop Optimization ↗ Integer Programming (IP)

Job-shop scheduling is a notoriously di!cult optimization problem involving the scheduling of a
set of n jobs on m machines. Each job Ji consists of a sequence of operations Oi1, Oi2, . . . , Oiki ,
where each operation Oij must be processed on a specific machine Mij for a given processing time
pij . Key constraints include precedence (operations within a job must follow their specified order)
and machine capacity (a machine can only process one operation at a time). A common objective
is to minimize the makespan, Cmax, which is the time when all jobs are completed.77 This problem
can be formulated and solved using Integer Programming (IP).

Mapping to IP:
Decision Variables:

• sij : A continuous or integer variable representing the start time of operation j of job i.

• xijk,i→j→ : A binary variable, xijk,i→j→ = 1 if operation (i, j) (job i, operation j) precedes operation
(i↑, j↑) on machine k; 0 otherwise. This is needed when both operations use machine k. (This
is one way to model disjunctions).

Alwin @ University of Indonesia 20



Constraints:

• Precedence Constraints: For any job i, if operation Oij must be performed before Oi,j+1,
then:

sij + pij ↘ si,j+1

This ensures that an operation only starts after its predecessor in the same job is finished.77

• Machine Capacity Constraints (Disjunctive Constraints): For any two operations
(i, j) and (k, l) that must be processed on the same machine Mshared: Either

sij + pij ↘ skl (operation (i, j) finishes before (k, l) starts)

OR
skl + pkl ↘ sij (operation (k, l) finishes before (i, j) starts).

These disjunctive constraints are typically linearized using the ”big-M” formulation with
binary variables. Let yijkl be a binary variable that is 1 if (i, j) precedes (k, l) on Mshared,
and 0 if (k, l) precedes (i, j).

sij + pij ↘ skl +M(1≃ yijkl)

skl + pkl ↘ sij +Myijkl

Here, M is a su!ciently large positive constant (e.g., the sum of all processing times, known
as the horizon).77,79

• Non-negativity: sij ⇓ 0 for all operations.

Objective Function: To minimize the makespan Cmax:

Minimize Cmax

Subject to:
Cmax ⇓ si,last opi

+ pi,last opi
for all jobs i,

where last opi is the last operation of job i. This ensures Cmax is at least the completion time of
the last operation of every job.77

Solution: An Integer Linear Programming (ILP) solver attempts to find integer values for the
binary variables and continuous/integer values for the start time variables sij that satisfy all the
defined constraints while minimizing the objective function Cmax.81 The Google OR-Tools library
provides examples of such formulations.77

These examples demonstrate the versatility of problem reduction as a practical problem-solving
strategy, enabling the application of established theoretical frameworks and computational tools to
diverse real-world scenarios.

7 Validity, Correctness, and Pitfalls

The utility of a problem reduction hinges on its validity and correctness. A flawed reduction can
lead to incorrect conclusions about problem complexity or erroneous solutions. Understanding the
criteria for a valid reduction and common pitfalls is therefore essential.
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7.1 What Makes a Reduction Valid?

A reduction from problem A to problem B is considered valid if it correctly establishes the intended
relationship between the two problems, typically concerning their solvability or complexity. Key
criteria include 1:

• Correct Transformation of Instances: The reduction must provide a well-defined algo-
rithm (the transformation function f) that converts any valid instance IA of problem A into
a valid instance IB = f(IA) of problem B.

• Preservation of Solution Property (Equivalence): This is the most critical aspect. The
instance IA must have a ”yes” solution if and only if the transformed instance IB has a ”yes”
solution (for decision problems). For search or optimization problems, a solution to IB must
be transformable back into a correct solution for IA. This ”if and only if” condition ensures
that solving IB provides the correct answer for IA.

• E!ciency of the Transformation: The algorithm performing the transformation f (and
any transformation of the solution back from B to A) must be ”e!cient” relative to the
complexity of the problems being studied.

– For NP-completeness proofs, the transformation must be computable in polynomial
time.1 If the reduction itself is as hard as or harder than solving problem A directly
(e.g., an exponential-time reduction for an NP problem), it o”ers no advantage and does
not validly establish relative hardness in the context of P vs. NP.1

– For classes within P, such as L or NL, log-space reductions are required.1

– For decidability arguments, the transformation must be a computable function.1

• Computability of the Transformation: The reduction function itself must be computable.
A reduction that relies on a noncomputable function, for instance, can misleadingly ”reduce”
an undecidable problem to a decidable one, but such a reduction is not practically useful for
solving the original problem.1

7.2 Formal Proof of Correctness: Maintaining Equivalence

A formal proof of correctness for a reduction from problem A to problem B (where f is the trans-
formation function from instances of A to instances of B) requires demonstrating the biconditional:

An instance IA of A is a ”yes” instance ↑↓ the instance f(IA) of B is a ”yes” instance.

This involves proving two directions 36:

• Forward Direction (Completeness/Soundness of ”yes” mapping):

– Assume IA is a ”yes” instance of A. Show that f(IA) must also be a ”yes” instance of
B.

– This typically involves taking a solution or certificate for IA and demonstrating how
it can be used to construct or infer a solution or certificate for f(IA). For example,
in SAT ↗ 3-SAT, a satisfying assignment for the SAT formula is shown to satisfy the
constructed 3-SAT formula (possibly by assigning values to new variables).42

• Backward Direction (Completeness/Soundness of ”no” mapping, or ”yes” from
B to A):
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– Assume f(IA) is a ”yes” instance of B. Show that IA must also be a ”yes” instance of
A.

– This often involves taking a solution or certificate for f(IA) and showing how it can be
transformed or interpreted to yield a solution or certificate for IA.

– Crucially, this direction only needs to hold for instances of B that are in the range of f .
One can exploit the specific structure of f(IA).31 For example, in 3-SAT ↗ CLIQUE, if
the constructed graph has a k-clique, the structure of the graph (no edges within clause-
triples, no edges between contradictory literals) ensures that this clique corresponds to
a consistent and satisfying assignment for the original 3-SAT formula.47

The proof must cover all possible instances of problem A, not just specific examples. Mathematical
induction, proof by contradiction, and case analysis are common techniques used in these proofs.36

7.3 Common Errors and Pitfalls in Designing Reductions

Designing reductions, particularly for NP-completeness proofs, is prone to several common errors:

• Wrong Direction of Reduction:

– Error: To prove problem Y is NP-hard, one reduces Y to a known NP-hard problem
X (i.e., Y ↘p X). This only shows Y is ”no harder than” X. If X is NP-hard, this
provides no information about Y ’s hardness (Y could be in P).

– Correct Approach: To prove Y is NP-hard, one must reduce a known NP-hard problem
X to Y (i.e., X ↘p Y ). This establishes that Y is at least as hard as X.22

– This is a very frequent mistake in student attempts at NP-completeness proofs.22

• Non-Polynomial Time Transformation:

– Error: The algorithm performing the transformation f from an instance of A to an
instance of B takes super-polynomial (e.g., exponential) time.

– Consequence: Even if B is in P, the overall solution for A via the reduction would be
exponential, so A ↘p B is not established. The reduction is not ”e!cient enough” to
draw conclusions about P vs. NP.1 For example, reducing SAT to a trivial problem
by having the reduction solve SAT in exponential time is not a valid polynomial-time
reduction.1

• Flawed Equivalence Proof:

– Error: The proof that ”IA is YES ↑↓ f(IA) is YES” is incorrect or incomplete.

– Missing one direction: Often, the proof might convincingly show one direction (e.g.,
YES for IA =↓ YES for f(IA)) but fail to adequately prove the other direction, or the
proof for the other direction might be flawed.

– Incorrectly handling all cases: The proof might only work for special types of instances
of A or special types of solutions for f(IA), rather than all arbitrary ”yes” instances or
all solutions to f(IA) that imply a ”yes” for IA.

– Loss of Completeness/Information: The transformation f might lose essential informa-
tion from IA such that a solution to f(IA) no longer uniquely determines or implies a
solution to IA.
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– Example: One common mistake is to assume that if f(IA) has a solution, this solution
must have a very specific structure that directly maps back, without proving that any
solution to f(IA) (of the type generated by f) implies a solution to IA.31

• Asymmetric Instance Sizes or Parameters:

– Error: The size of the transformed instance f(IA) is exponentially larger than the size
of IA. Or, if problem A has a parameter k and problem B has a parameter k↑, the
relationship between k and k↑ is not correctly established or leads to an exponential
blow-up.

– Consequence: Even if the transformation algorithm itself is polynomial in |IA|, if |f(IA)|
is exponential in |IA|, then solving f(IA) (even if B is in P with respect to its input size)
will be exponential in |IA|.

• Reducing to a Trivial or Too-Specific Problem Instance:

– Error: The transformation f always maps instances of A to a very small or fixed set of
instances of B, or to trivial instances (e.g., always ”yes” or always ”no” instances of B,
unless A itself is trivial).

– Consequence: This usually indicates a flaw in the transformation’s ability to capture the
full complexity of A. A reduction must map ”yes” instances of A to ”yes” instances of
B, and ”no” instances of A to ”no” instances of B, across the range of A’s inputs.

• Confusing Decision and Optimization Versions:

– Error: Reducing an optimization version of problem A to a decision version of problem
B (or vice-versa) without carefully handling the relationship between the optimal value
and the decision threshold.

– Correct Approach: Typically, one reduces decision version to decision version. If dealing
with optimization problems, approximation-preserving reductions are needed, or one
must clearly show how solving the decision version of B (e.g., via binary search on the
parameter) helps solve the optimization version of A.

• Frequent misconceptions about NP-completeness itself can also lead to flawed reduction at-
tempts, such as believing all instances of an NP-complete problem are hard, or that NP-
complete problems are the ”most di!cult known problems” (some are undecidable or require
more than exponential time).6

7.4 When Reductions Fail or Are Inapplicable/Misleading

Reductions are powerful, but they have limitations and can be misapplied:

• Undecidable Problems: If problem A is undecidable (e.g., the Halting Problem) and
one attempts to reduce it to a decidable problem B using a computable function, this is
impossible if the reduction were valid, as it would imply A is decidable.1 Conversely, reducing
an undecidable problem A to B proves B is also undecidable, provided the reduction is
computable.1 A reduction that itself uses a noncomputable function can formally map an
undecidable problem to a decidable one, but this is not a useful reduction for solving the
original problem.1
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• Non-Polynomial (or Too Complex) Transformations: As discussed, if the transforma-
tion f : A ↗ B takes exponential time, then A ↘p B is not established. Even if B → P ,
solving A via this reduction would be exponential. The reduction is too complex to be useful
for showing A → P or for typical NP-hardness arguments.1 The reduction must be ”easy”
relative to the complexity of the problems in the class being studied.1

• Reducing to Trivial Instances: If a reduction maps all instances of A to a ”yes” instance
of B (or all to ”no”), it doesn’t prove anything unless A itself is trivial. A valid reduction
must distinguish between ”yes” and ”no” instances of A by mapping them to corresponding
”yes” and ”no” instances of B. Reducing SAT to ”is 0 = 0?” by having the reduction solve
SAT and output 0 = 0 if SAT is true, and 1 = 0 if SAT is false, is an example of a reduction
that is as hard as the original problem.1

• Incorrect Notion of ”Hardness”: A reduction only shows that the target problem is at
least as hard as the source problem (with respect to the resources allowed by the reduction
type). It doesn’t necessarily mean they are equally hard, unless a reduction also exists in the
other direction with similar e!ciency.

• Misleading Practical Implications: Even if A ↘p B and B → P , the polynomial algorithm
for A derived via B might have a very high degree or large constant factors, making it
impractical, even if theoretically ”e!cient”.6 The existence of a polynomial-time reduction
does not always translate to a practically fast algorithm.

Understanding these limitations is crucial for correctly applying reduction techniques and in-
terpreting their results in computational complexity.

8 Emerging Tools & Approaches

The field of problem reduction, while foundational, continues to evolve, with emerging tools and
computational paradigms o”ering new ways to tackle complex problems and potentially even assist
in the reduction process itself.

8.1 Use of SAT Solvers, ILP Solvers, and AI Tools in Reduction Tasks

SAT Solvers: Boolean Satisfiability (SAT) solvers are programs that determine if a given Boolean
formula has a satisfying assignment.91 Since many NP-complete problems can be reduced to SAT
(often via 3-SAT), SAT solvers have become powerful general-purpose tools for solving instances
of these NP-complete problems in practice.92

Process:

• A problem instance I of an NP-complete problem P is reduced to an instance φ of SAT (or
3-SAT). This reduction is typically a standard, manually derived polynomial-time transfor-
mation.

• The SAT solver is then used to find a satisfying assignment for φ.

• If φ is satisfiable, its satisfying assignment can often be translated back to a solution for the
original instance I of P . If φ is unsatisfiable, then I has no solution.
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Applications: SAT solvers are used in diverse areas like hardware and software verification,
AI planning, scheduling, and even proving mathematical theorems.91 For example, they have been
used to find Van der Waerden numbers and solve the Boolean Pythagorean triples problem.91

Verification of Reductions: While SAT solvers primarily solve instances, they can also
play a role in verifying the correctness of reasoning steps, which is related to verifying parts of a
reduction. For incremental SAT problems, methods exist for generating machine-checkable proofs
of the solver’s reasoning.96 Specialized tools can also verify the resolution sequence from a SAT
solver to confirm unsatisfiability.97 Research by 98 describes an online judge that uses SAT solvers
to check the correctness of student-submitted reductions between NP-complete problems by testing
if the reduction preserves the answer for various inputs.

ILP (Integer Linear Programming) Solvers: ILP is a technique for optimizing a linear
objective function subject to linear equality and inequality constraints, where variables must be
integers.81 Many NP-hard optimization and decision problems can be formulated as ILP instances.

Process:

• An instance I of a problem P (e.g., Job-Shop Scheduling, Traveling Salesman Problem, Set
Cover) is modeled as an ILP. This involves defining integer (often binary) decision variables,
linear constraints representing the problem’s rules, and a linear objective function to be
optimized (or a feasibility question).

• A general-purpose ILP solver (e.g., Gurobi, CPLEX) is used to find an optimal or feasible
integer solution.

Applications: Resource allocation, production planning, scheduling, network design, and
logistics.81 For example, Job-Shop Scheduling can be reduced to ILP by defining variables for
task start times and using constraints for precedence and machine capacity.77

Relationship to Reductions: Formulating a problem as an ILP is itself a form of reduction
to the general ILP problem. Since ILP is NP-hard 81, this doesn’t make the original problem ”easy”
in the P vs. NP sense, but it allows leveraging highly optimized ILP solvers.

AI Tools (General Machine Learning & Reasoning): While not directly performing re-
ductions in the classical sense, AI and ML techniques are increasingly used in ways that complement
or assist in problem-solving that might otherwise involve reductions:

• Automated Reasoning: AI research has produced automated reasoning techniques like
SMT (Satisfiability Modulo Theories) solvers, which extend SAT by incorporating theories for
arithmetic, arrays, bit-vectors, etc.99 SMT solvers are used for program verification, analysis,
and synthesis, e”ectively solving complex constraint satisfaction problems that can be seen
as targets of reductions from higher-level specifications.95

• Machine Learning for Algorithm Selection/Configuration: ML models can be trained
to select the best algorithm or heuristic for a given problem instance, or to configure solver
parameters, which can be beneficial when a problem is reduced to a target solvable by multiple
methods.

• Learning Heuristics: Reinforcement learning and other ML approaches are used to learn
heuristics for hard optimization problems, which can be seen as an alternative to finding exact
solutions via reduction to, say, ILP.103

• Dimensionality Reduction in ML: Techniques like PCA (Principal Component Anal-
ysis) or autoencoders reduce the number of features in a dataset while preserving essen-
tial information.105 This is a form of ”problem simplification” akin to reduction, but in a
statistical/data-driven context rather than a formal complexity-theoretic one.
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8.2 Discuss Possible Automation of Reductions

The manual process of finding and proving problem reductions is often highly creative and complex,
requiring deep insight into the structures of the problems involved. Automating this process is a
significant research challenge.

Current State:

• Automated Theorem Provers (ATPs): ATPs can verify the logical correctness of proof
steps and, in some cases, discover simple proofs.107 They could potentially be used to verify
the correctness of the ”if and only if” part of a reduction proof if it’s formalized appropriately.
However, discovering the transformation f itself is generally beyond current ATP capabilities
for complex reductions.

• Program Synthesis: Techniques in program synthesis aim to automatically generate a
program that meets a given specification.109 If a reduction is viewed as a program that trans-
forms instances, then program synthesis techniques could, in principle, be applied. Recent
work explores using abstraction-based pruning in top-down enumeration for program synthe-
sis, which can be automated under certain monotonicity conditions, potentially applicable to
synthesizing simpler transformations.109

• Domain-Specific Automation: For specific types of problems or transformations, some
automation exists. For example, automated tools can convert logical formulas into CNF for
SAT solvers 92, or help in synthesizing fault-tolerant quantum circuits by translating the
problem into logic and using SAT solvers.111

• REDNP Language: An attempt to formalize reductions for NP-complete problems was
made with the REDNP language, designed to describe reductions in a way that could be
processed and potentially verified, with an online judge using SAT solvers to test submitted
reductions.98

Challenges:

• Creativity and ”Gadget” Invention: Many reductions rely on clever ”gadgets” or struc-
tural insights that are hard to formalize in a way that an algorithm could discover them.

• Search Space: The space of possible transformations between two arbitrary problems is
vast.

• Proving Equivalence: Automatically generating the formal proof of IA ↑↓ f(IA) is as
hard as general theorem proving.

8.3 Future Research: AI-assisted Problem Mapping and Reduction Synthesis

The integration of modern AI, particularly large language models (LLMs) and advanced machine
learning, opens new avenues for research in automating or assisting with problem reductions.

AI for Hypothesis Generation / Problem Mapping:

• LLMs and knowledge graph-based AI could potentially analyze problem descriptions and sug-
gest known problems with similar structures, thereby guiding human researchers in choosing a
target problem P ↑ for a reduction.113 Agentic AI systems are being developed for tasks like lit-
erature review and hypothesis generation in scientific discovery, which share some similarities
with identifying related computational problems.113
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• Machine learning models could be trained on datasets of known reductions (e.g., the Karp
dataset mentioned in 98) to learn patterns or features that indicate a fruitful reduction path-
way between types of problems.

AI for Reduction Synthesis:

• Learning Transformation Functions: For restricted classes of problems or types of reduc-
tions, ML models, perhaps using techniques from program synthesis or genetic programming,
might learn to construct transformation functions. Research in automated synthesis of cer-
tified neural networks using CEGIS (Counter-Example Guided Inductive Synthesis) loops,
which involve learning and verification phases, shows a potential direction.110

• Interactive Reduction Assistants: AI tools could act as assistants to human researchers,
suggesting potential gadgets, checking parts of equivalence proofs, or exploring variations of
known reduction techniques.

• Automated Verification of Reductions: SMT solvers and ATPs are becoming more
powerful. Future research could focus on developing more e”ective frameworks for formalizing
reduction proofs to make them amenable to automated verification.96

Challenges and Open Questions:

• Formalizing Intuition: A major hurdle is formalizing the intuitive and creative leaps in-
volved in designing novel reductions.

• Scalability and Generalization: AI approaches would need to scale to complex problems
and generalize beyond the specific examples they were trained on.

• Correctness Guarantees: Ensuring the absolute correctness of AI-generated reductions
and their proofs is paramount and challenging, especially with probabilistic models like
LLMs.99

The Kabanets-Impagliazzo theorem linking PIT algorithms to circuit lower bounds highlights
deep connections between algorithms and hardness, suggesting that automated discovery in one
area could impact the other, but the ”how” remains a major research direction.116

While fully automated discovery of complex, novel reductions remains a distant goal, AI-assisted
tools for problem mapping, partial synthesis, and verification of reductions represent a promising
avenue for future research, potentially accelerating progress in computational complexity.
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9 Conclusion

Problem reduction is an indispensable concept in theoretical computer science, serving as the pri-
mary tool for comparing the computational di!culty of problems and for structuring the landscape
of complexity classes. Its ability to transform instances of one problem into another allows us
to leverage known solutions for new challenges and, more critically, to establish the boundaries
of computational tractability through proofs of hardness, particularly for NP-complete problems.1

The formal definitions of various reduction types—many-one, Turing, polynomial-time, log-space,
and approximation-preserving—each with specific constraints and applications, provide a nuanced
vocabulary for discussing computational relationships.15

The significance of problem reduction is deeply rooted in its dual utility: it can simplify complex
problems by mapping them to simpler or solved ones, and it can demonstrate the inherent di!culty
of a problem by showing that a known hard problem can be transformed into it. This latter aspect
is the cornerstone of NP-completeness theory, which has profound implications for algorithm design
and our understanding of the limits of e!cient computation.1 The classic examples of reductions,
such as SAT to 3-SAT, 3-SAT to CLIQUE, Subset Sum to Knapsack, and Hamiltonian Path to TSP,
not only illustrate the mechanics of performing reductions but also form the links in a chain that
establishes the NP-completeness of a vast array of important problems.42 The practical applications
of these concepts, from scheduling and resource allocation to job-shop optimization, underscore the
real-world impact of this theoretical framework.68

However, the power of reductions comes with the necessity for rigor. A reduction must be
valid—meaning the transformation is e!cient (e.g., polynomial-time for NP-completeness) and
correctly preserves the solution property (”yes” i” ”yes”) between the original and transformed
instances.1 Common pitfalls, such as incorrect direction of reduction, non-polynomial transforma-
tions, or flawed equivalence proofs, can invalidate conclusions about problem complexity.22 Further-
more, reductions can be inapplicable or misleading if the transformation is too complex relative to
the problems, or if it involves non-computable steps.1

Looking ahead, the field is exploring emerging tools and approaches. SAT and ILP solvers
are practically employed to solve instances of problems once they are reduced to SAT or ILP.81

The prospect of automating the discovery or synthesis of reductions themselves, perhaps aided
by AI and machine learning, presents an exciting frontier.109 While significant challenges remain
in formalizing the creative aspects of reduction design, AI-assisted problem mapping and partial
reduction synthesis could accelerate research.

Areas for Further Research and Open Problems:

• The P versus NP Problem: This remains the most significant open problem in theoretical
computer science, and its resolution is intrinsically tied to the nature and limits of polynomial-
time reductions.6

• Automation of Reduction Discovery and Verification:

– Developing AI/ML techniques that can reliably suggest or synthesize novel problem
reductions is a major long-term goal.109 Current research is still nascent.

– Improving automated theorem provers and SMT solvers to more e”ectively verify the
correctness of complex, human-designed reductions.96

• Open problems in meta-complexity, such as the NP-hardness of MCSP (Minimum Circuit
Size Problem) under various reduction types and assumptions, directly probe the limits and
properties of reductions themselves.117 For example, proving Formula-MCSP→ is reducible to
Formula-MCSP in subexponential time is an open question.117
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• New Reduction Types and Frameworks:

– Exploring new types of reductions suitable for emerging computational paradigms, such
as quantum computing (e.g., characterizing quantum promise problems 119) or parame-
terized complexity.

– Understanding the limitations of current reduction techniques, for instance, when re-
ductions are too complex to be practically useful even if theoretically polynomial 90, or
when they fail to capture average-case hardness e”ectively.117

• Fine-grained Complexity and Reductions: Developing reductions that preserve finer-
grained complexity measures beyond polynomial time (e.g., O(nc) for specific c) to better
understand the exact complexity of problems within P or NP.

• Reductions in Approximation Algorithms: Further development of approximation-
preserving reductions to achieve tighter inapproximability bounds for optimization problems,
and understanding the structure of complete problems for various approximability classes.15

In conclusion, problem reduction is a dynamic and foundational area of computer science. Its
principles are essential for classifying computational problems, guiding algorithm design, and un-
derstanding the fundamental capabilities and limitations of computation. While many classical
reductions are well-established, the ongoing quest to solve harder problems, the rise of new compu-
tational models, and the potential for AI-driven discovery ensure that the theory and application
of problem reduction will continue to be a vibrant field of research.
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repid=rep1&type=pdf&doi=6bd62e0ba7233c5086fe4b9061926d191894714b

• The ever common Knapsack problem - Vitaly Parnas, https://vitalyparnas.com/
guides/knapsack-problem/

• NP reduction from subset sum to Knapsack - YouTube, https://www.youtube.com/
watch?v=pK8VQd6U7BI

• 28.19. Reduction of Hamiltonian Cycle to Traveling Salesman - OpenDSA, https:
//opendsa-server.cs.vt.edu/OpenDSA/Books/Everything/html/hamiltonianCycle_

to_TSP.html

• Hamiltonian path problem - Wikipedia, https://en.wikipedia.org/wiki/

Hamiltonian_path_problem

• Approximate TSP, https://www.cs.williams.edu/~shikha/teaching/spring20/

cs256/lectures/Lecture30.pdf

• courses.cs.duke.edu, https://courses.cs.duke.edu/compsci330/spring19/

lecture24scribe.pdf

• The traveling salesman problem - LIX, https://www.lix.polytechnique.fr/~vjost/
mpri/TSP.pdf

• P/NP reduction (hamiltonian cycle to TSP) - Math Stack Exchange, https://math.
stackexchange.com/questions/2671774/p-np-reduction-hamiltonian-cycle-to-tsp

• 1 Hamiltonian path problem Definition 1 - Rensselaer Polytechnic Institute, http:
//www.cs.rpi.edu/~goldberg/14-CC/08-2-reduction.pdf

• approximation algorithms for path tsp - CMU School of Computer Science, https:
//www.cs.cmu.edu/~gauravar/notes/6854.pdf

• 11.2. NP-Completeness — Formal Languages With Visualizations
- OpenDSA, https://opendsa.cs.vt.edu/ODSA/Books/vt/4114/spring-2020/

VisFormalLangSpring2020/html/NPComplete.html
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• NP-Completeness - UCSB Computer Science, https://sites.cs.ucsb.edu/~suri/

cs130b/npc.pdf

• NP-complete Problems and Reductions - VisuAlgo, https://visualgo.net/en/

reductions

• A graph coloring algorithm for large scheduling problems, https://nvlpubs.nist.
gov/nistpubs/jres/84/jresv84n6p489_a1b.pdf

• Graph Coloring: Techniques, Applications — Vaia, https://www.vaia.com/en-us/
explanations/math/discrete-mathematics/graph-coloring/

• Solve Scheduling Problems With Relationship Coloring and Neo4j
- Graph Database & Analytics, https://neo4j.com/blog/developer/

scheduling-problems-relationship-coloring/

• je”e.cs.illinois.edu, https://jeffe.cs.illinois.edu/teaching/algorithms/book/

11-maxflowapps.pdf

• Dinic’s Algorithm: Mastering Maximum Flow in Net-
work Graphs – AlgoCademy Blog, https://algocademy.com/blog/

dinics-algorithm-mastering-maximum-flow-in-network-graphs/

• Maximum flow and minimum cut problems — Combinatorics Class
Notes - Fiveable, https://library.fiveable.me/combinatorics/unit-14/

maximum-flow-minimum-cut-problems/study-guide/SeAQCKVNqwggBRfK

• Max Flow Problem Introduction — GeeksforGeeks, https://www.geeksforgeeks.org/
max-flow-problem-introduction/

• The Job Shop Problem — OR-Tools — Google for Developers, https://developers.
google.com/optimization/scheduling/job_shop

• Modeling Examples - Python MIP Documentation - Read the Docs, https://

python-mip.readthedocs.io/en/latest/examples.html

• Job Shop Scheduling - Choice of Big-M changes the optimal solution - Op-
erations Research Stack Exchange, https://or.stackexchange.com/questions/12797/

job-shop-scheduling-choice-of-big-m-changes-the-optimal-solution

• Integer Linear Programming - Gurobi Optimization, https://www.gurobi.com/faqs/
integer-linear-programming/

• Integer Linear Programming (ILP), https://rtime.ciirc.cvut.cz/~hanzalek/KO/
ILP_e.pdf

• Reductions, https://courses.grainger.illinois.edu/cs498mv/fa2018/reductions.

pdf

• 28.2. Reductions — OpenDSA Data Structures and Algorithms Mod-
ules Collection, https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/

Reduction.html
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• Proving Algorithm Correctness, https://course.ccs.neu.edu/cs5002f18-seattle/
lects/cs5002_lect11_fall18_notes.pdf

• Lecture 8: NP Completeness, https://www.cs.rice.edu/~vardi/comp409/lec8.pdf

• NP-Completeness - cs.Princeton, https://www.cs.princeton.edu/~wayne/cs423/

lectures/np-complete

• Reduction (Complexity) — Encyclopedia MDPI, https://encyclopedia.pub/entry/
28110

• Complexity no Bar to AI - Gwern.net, https://gwern.net/complexity

• Polynomial-Time Algorithms* - CORE, https://core.ac.uk/download/pdf/

82528672.pdf

• SAT solver - Wikipedia, https://en.wikipedia.org/wiki/SAT_solver

• E”ective problem solving using SAT solvers - University of Waterloo, https://cs.
uwaterloo.ca/~cbright/reports/sat-maple.pdf

• Modern SAT solvers: fast, neat and underused (part 1 of N) : r/program-
ming - Reddit, https://www.reddit.com/r/programming/comments/94cf5s/modern_sat_
solvers_fast_neat_and_underused_part_1/

• Formal Verification with SMT Solvers: Why and How - Texas Computer Science,
https://www.cs.utexas.edu/~moore/acl2/seminar/2009.04.29-johnson/final.pdf

• Proving that solutions to incremental satisfiability problems
are correct - Amazon Science, https://www.amazon.science/blog/

proving-that-solutions-to-incremental-satisfiability-problems-are-correct

• Validating SAT Solvers Using an Independent Resolution-Based Checker
- Princeton University, https://www.princeton.edu/~chaff/publication/DATE2003_

validating_sat_solver.pdf

• Automatic Evaluation of Reductions between NP-Complete Problems - Re-
searchGate, https://www.researchgate.net/publication/266941365_Automatic_

Evaluation_of_Reductions_between_NP-Complete_Problems

• Future of AI Research - AAAI, https://aaai.org/wp-content/uploads/2025/03/

AAAI-2025-PresPanel-Report-FINAL.pdf

• Satisfiability modulo theories - Wikipedia, https://en.wikipedia.org/wiki/

Satisfiability_modulo_theories

• Validating SMT Solvers for Correctness and Performance via Grammar-
Based Enumeration - ResearchGate, https://www.researchgate.net/publication/

384758091_Validating_SMT_Solvers_for_Correctness_and_Performance_via_

Grammar-Based_Enumeration

• The Machine Learning Algorithms List: Types and
Use Cases - Simplilearn.com, https://www.simplilearn.com/

10-algorithms-machine-learning-engineers-need-to-know-article
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• Machine Learning Algorithms — GeeksforGeeks, https://www.geeksforgeeks.org/

machine-learning-algorithms/

• Top 12 Dimensionality Reduction Techniques for Ma-
chine Learning - Encord, https://encord.com/blog/

dimentionality-reduction-techniques-machine-learning/

• What is Dimensionality Reduction? - IBM, https://www.ibm.com/think/topics/
dimensionality-reduction

• Automated theorem proving - Wikipedia, https://en.wikipedia.org/wiki/

Automated_theorem_proving

• Automated Reasoning - UF CISE, https://www.cise.ufl.edu/~jyoungqu/

JeremyYoungquist_RobertLong.pdf

• Automating Pruning in Top-Down Enumeration for Program Synthesis Problems
with Monotonic Semantics - arXiv, https://arxiv.org/pdf/2408.15822

• Automated Synthesis of Certified Neural Networks: Initial Results and Open
Research Lines - CEUR-WS.org, https://ceur-ws.org/Vol-3904/paper9.pdf

• Agentic AI for Scientific Discovery: A Survey of Progress, Challenges, and Future
Directions, https://arxiv.org/html/2503.08979v1

• Survey of AI-Driven approaches for Solving Nonlinear Partial Di”erential
Equations - Preprints.org, https://www.preprints.org/manuscript/202505.0751/v1/

download

• Review of Artificial Intelligence and Machine Learning Technologies: Classifica-
tion, Restrictions, Opportunities and Challenges - MDPI, https://www.mdpi.com/
2227-7390/10/15/2552

• [2504.06044] Polynomial-Time PIT from (Almost) Necessary Assumptions - arXiv,
https://arxiv.org/abs/2504.06044

• mc23:list-of-open-problems [Simons Institute Wiki], https://wiki.simons.berkeley.
edu/doku.php?id=mc23:list-of-open-problems

• Open problems - Tuukka Korhonen, https://tuukkakorhonen.com/problems.html

• Complexity Theory for Quantum Promise Problems - arXiv, https://arxiv.org/
pdf/2411.03716

• Computers and Intractability - Wikipedia, https://en.wikipedia.org/wiki/

Computers_and_Intractability

• Computers and Intractability: A Guide to the Theory of NP-Completeness
- Goodreads, https://www.goodreads.com/book/show/284369.Computers_and_

Intractability

• (PDF) THE GUIDE TO NP-COMPLETENESS IS 40 YEARS OLD: AN
HOMAGE TO DAVID S. JOHNSON - ResearchGate, https://www.researchgate.
net/publication/346939255_THE_GUIDE_TO_NP-COMPLETENESS_IS_40_YEARS_OLD_AN_

HOMAGE_TO_DAVID_S_JOHNSON
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• Algorithm Design: 9780321295354 - Amazon.com, https://www.amazon.com/

Algorithm-Design-Jon-Kleinberg/dp/0321295358

• Jon Kleinberg Eva Tardos Algorithm Design - densem.edu, https://densem.edu/

HomePages/browse/469775/JonKleinbergEvaTardosAlgorithmDesign.pdf

• What is a ”reduction”, really? - Computer Science Stack Exchange, https://cs.

stackexchange.com/questions/10393/what-is-a-reduction-really

• L (complexity) - Wikipedia, https://en.wikipedia.org/wiki/L_(complexity)

• Problem 1. Sipser described a polynomial time reduction of 3SAT to CLIQUE -
Reed College, https://people.reed.edu/~davidp/387/groups/07mon-grps.pdf

• Sipser: Chapter 7 - Montana State University, https://www.cs.montana.edu/paxton/
classes/older/spring-2016/csci338/lectures/ch7/7d.html

• Rules for Reductions in NP-Completeness Proofs (many-one vs one-
many) - Math Stack Exchange, https://math.stackexchange.com/questions/2706098/
rules-for-reductions-in-np-completeness-proofs-many-one-vs-one-many

• The Role of Pseudocode in Problem Solving: A Com-
prehensive Guide - AlgoCademy, https://algocademy.com/blog/

the-role-of-pseudocode-in-problem-solving-a-comprehensive-guide/

• All to One Reduce Pseudocode - YouTube, https://www.youtube.com/watch?v=

-9obU_xvEzc
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