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Abstract

The security of our global digital infrastructure—from financial transactions to classified govern-
ment communications—is predicated on the computational di!culty of a few specific mathematical
problems. Public-key cryptosystems, such as RSA and Elliptic Curve Cryptography (ECC), have
served as the bedrock of digital trust for decades, assuming that problems like integer factorization
and the discrete logarithm are intractable for classical computers. In 1994, Peter Shor introduced
a quantum algorithm that fundamentally invalidates this assumption. This paper provides a com-
prehensive exploration of how Shor’s algorithm achieves this feat. We deconstruct the algorithm’s
mechanics, revealing how it transforms these famously hard problems into a solvable task of period-
finding. We demonstrate its direct application to breaking both RSA and ECC, thereby exposing
their shared vulnerability to a quantum adversary. Contextualizing this theoretical threat, we ex-
amine the current state of quantum hardware development, the immense resources required for a
cryptographically relevant attack, and the global e”ort led by institutions like NIST to standardize
a new suite of post-quantum cryptographic algorithms. Finally, we analyze the profound security
and ethical implications of this paradigm shift, including the immediate danger of ”Harvest Now,
Decrypt Later” attacks and the urgent, global imperative to transition to a quantum-resistant
cryptographic future.

1 Introduction

The modern world runs on data, and the con-
fidentiality, integrity, and authenticity of that
data are guaranteed by a sophisticated architec-
ture of cryptographic protocols. At the heart
of this architecture lies public-key cryptogra-
phy, a revolutionary concept that enables secure
communication and digital signatures between
parties who have never previously met. This
digital trust infrastructure underpins everything
from secure e-commerce and private messaging
to the command-and-control systems that safe-
guard national security [1].

The security of these systems is not absolute;
it is conditional. It rests upon the presumed
computational di!culty of certain mathematical
problems. For decades, we have built our digital
society on the belief that these problems are too

hard to solve in any practical timeframe using
the best-known algorithms on the most powerful
classical computers.

The advent of quantum computing challenges
this foundational belief. A quantum computer
is not merely a faster version of a classical
computer; it operates on an entirely di”erent
set of physical principles, harnessing the coun-
terintuitive phenomena of quantum mechan-
ics—superposition, entanglement, and interfer-
ence—to process information in ways that have
no classical analogue [3].

This paper argues that Peter Shor’s 1994 algo-
rithm for integer factorization and discrete loga-
rithms represents a singular, disruptive event in
the history of information security [4]. It is not
an incremental improvement on existing attacks
but a fundamental breakthrough that invalidates
the core security assumptions of the most widely
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deployed public-key systems.
Classical security relies on problems like in-

teger factorization being in a complexity class
that is believed to be outside of P (Polynomial
time) and BPP (Bounded-error Probabilistic
Polynomial time) [5]. Shor’s algorithm demon-
strates that these problems are, in fact, in BQP
(Bounded-error Quantum Polynomial time) [6].
This implies not just a faster computer but a fun-
damental shift in what is considered computable
in practice.

2 Modern Cryptography:
Foundations and Vulnera-
bilities

The security of modern public-key cryptogra-
phy relies on the concept of a ”trapdoor one-
way function.” This is a function that is easy
to compute in one direction but extremely di!-
cult to reverse unless one possesses a secret piece
of information—the trapdoor. The two most
dominant families of public-key cryptosystems,
RSA and Elliptic Curve Cryptography (ECC),
are built on di”erent mathematical problems,
yet they share a common structural vulnerability
when confronted with a quantum computer.

2.1 The RSA Cryptosystem

Developed in 1977 by Ron Rivest, Adi Shamir,
and Leonard Adleman, the RSA algorithm has
become the workhorse of public-key encryption.
Its security is directly tied to the di!culty of the
Integer Factorization Problem (IFP) [7].
The key generation process for RSA is as fol-

lows [7]:

1. Choose two large, distinct prime numbers,
p and q. These are kept secret.

2. Compute the modulus N = pq. This value
is part of the public key.

3. Compute Euler’s totient function of N ,
which is ω(N) = (p→ 1)(q → 1).

4. Choose a public exponent e such that 1 <

e < ω(N) and gcd(e,ω(N)) = 1.

5. Compute the private exponent d as the
modular multiplicative inverse of e modulo
ω(N).

To encrypt a message M , one computes the
ciphertext C as:

C ↑ M
e (mod N)

To decrypt the ciphertext C, the recipient uses
their private key d:

M ↑ C
d (mod N)

The correctness of this process is guaranteed
by Euler’s theorem. The security of RSA hinges
on the fact that an adversary, knowing only the
public key (N, e), cannot feasibly determine the
private key d. To compute d, the adversary
would need to know ω(N), which requires fac-
toring N into its prime components p and q.
For large N , this is considered classically in-
tractable [8].

2.2 Elliptic Curve Cryptography
(ECC)

Introduced independently by Neal Koblitz and
Victor Miller in 1985, Elliptic Curve Cryptog-
raphy (ECC) o”ers equivalent security to RSA
but with significantly smaller key sizes [9]. Its
security is based on the Elliptic Curve Discrete
Logarithm Problem (ECDLP).
An elliptic curve over a finite field Fp (where

p is a large prime) is the set of points (x, y) that
satisfy the equation:

y
2
↑ x

3 + ax+ b (mod p)

along with a special ”point at infinity,” de-
noted O. The coe!cients a and b are constants
from the field Fp [10].
ECC cryptosystems, such as the Elliptic Curve

Di!e-Hellman (ECDH) key exchange, operate as
follows [9]:

1. Alice and Bob publicly agree on a curve E

and a base point P of large order on that
curve.
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2. Alice chooses a secret integer kA (her pri-
vate key) and computes her public keyQA =
kAP .

3. Bob chooses a secret integer kB (his pri-
vate key) and computes his public key QB =
kBP .

4. They exchange public keys and compute the
shared secret (kAkB)P .

The security of ECC relies on the ECDLP:
given the base point P and the public key Q =
kP , it is computationally infeasible for a classical
computer to determine the private key k [11].

2.3 The Quantum Achilles’ Heel

Despite their di”erent mathematical underpin-
nings, the security of both RSA and ECC col-
lapses for the same fundamental reason: the hard
problems they rely on can be reduced to a more
general problem of period-finding [12].
For RSA, the task of factoring N can be trans-

formed into finding the period of the modular
exponentiation function f(x) = a

x mod N for a
randomly chosen base a. This function is peri-
odic because the set of integers coprime to N

forms a finite multiplicative group.
For ECC, solving the ECDLP to find k in Q =

kP can be transformed into finding the period of
a related two-dimensional function [13].

3 Quantum Computing:
A New Computational
Paradigm

Quantum computing is not an evolution of clas-
sical computing but a revolution. It leverages
the laws of quantum mechanics to process in-
formation in a fundamentally new way, granting
computational power that is unattainable for any
classical machine.

3.1 The Qubit: Superposition and En-
tanglement

The fundamental unit of classical information is
the bit, which can be in one of two definite states:

0 or 1. The quantum analogue is the qubit, a
two-level quantum system. A qubit can exist
in the state |0↓, the state |1↓, or, crucially, in a
superposition of both states simultaneously [14].
Using the Dirac bra-ket notation, the state of

a single qubit |ε↓ is described as:

|ε↓ = ϑ|0↓+ ϖ|1↓

Here, ϑ and ϖ are complex numbers called
probability amplitudes, which satisfy the nor-
malization condition |ϑ|

2 + |ϖ|
2 = 1 [15].

The second key principle is entanglement, a
uniquely quantum correlation. When two or
more qubits are entangled, their fates are inextri-
cably linked, regardless of the physical distance
separating them [15].

3.2 Quantum Interference: The En-
gine of Computation

A common misconception is that quantum com-
puters derive their power simply by trying all 2n

possibilities in parallel. The true source of quan-
tum advantage lies in the principle of quantum
interference [14].
Quantum algorithms are designed to be a care-

fully choreographed dance of probability ampli-
tudes:

1. Initialization: The quantum register is
prepared in a superposition of all possible
inputs.

2. Computation: A sequence of quantum
gates is applied to manipulate both values
and phases.

3. Interference: A final transformation
causes probability amplitudes to interfere.

4. Measurement: Through constructive in-
terference, correct answers are amplified
while incorrect answers cancel out.

3.3 Computational Complexity and
BQP

To formalize the power of quantum computers,
complexity theorists have defined the class BQP
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(Bounded-error Quantum Polynomial time) [16].
BQP is the class of decision problems that can
be solved by a quantum computer in polynomial
time with bounded error probability.
The known relationships between complexity

classes are [6]:

P ↔ BPP ↔ BQP ↔ PSPACE

Shor’s algorithm provides the strongest evi-
dence that BQP strictly contains BPP, demon-
strating that quantum computers possess funda-
mentally superior computational power.

4 Shor’s Algorithm: Theory
and Mechanism

Peter Shor’s 1994 algorithm is a masterpiece of
interdisciplinary thinking, elegantly weaving to-
gether classical number theory with quantum
computation. The algorithm’s genius lies in its
hybrid structure: it uses a classical computer to
frame the problem while delegating the classi-
cally intractable subroutine of period-finding to
a quantum computer.

4.1 The Classical Reduction: From
Factoring to Order-Finding

The first part of Shor’s algorithm is purely clas-
sical and reduces the problem of factoring a large
integer N to the problem of finding the order of
a randomly chosen integer modulo N [17].
The order of an integer a modulo N is the

smallest positive integer r such that a
r

↑ 1
(mod N). The reduction proceeds as follows:

1. Choose a random integer a such that 1 <

a < N .

2. Compute gcd(a,N) using the Euclidean al-
gorithm. If gcd(a,N) ↗= 1, we have found a
factor.

3. Find the order r of a modulo N (quantum
step).

4. If r is odd, return to step 1.

5. If r is even, compute x = a
r/2.

6. If x ↑ →1 (mod N), return to step 1.

7. Otherwise, compute gcd(x → 1, N) and
gcd(x+ 1, N) to find factors.

4.2 The Quantum Core: Period-
Finding Subroutine

The heart of Shor’s algorithm is the quantum
subroutine that finds the period r of the function
f(x) = a

x mod N . This is achieved using two
quantum registers and proceeds in three main
stages:
State Preparation and Modular Expo-

nentiation: The input register is initialized to
an equal superposition:

1
↘
Q

Q→1∑

x=0

|x↓|0↓

A quantum oracle for modular exponentiation
is applied:

Ua,N : |x↓|0↓ ≃⇐ |x↓|a
x mod N↓

Quantum Fourier Transform: After mea-
suring the output register, the input register col-
lapses into a periodic superposition. The Quan-
tum Fourier Transform (QFT) is then applied
[18]:

QFT|j↓ =
1

↘
Q

Q→1∑

k=0

e
2ωijk/Q

|k↓

Measurement and Classical Post-

Processing: The input register is measured,
yielding an integer c that is close to a multiple
of Q/r. The continued fractions algorithm is
used to extract the period r.

4.3 Complexity Analysis

The power of Shor’s algorithm lies in its dra-
matic reduction in computational complexity
compared to classical algorithms:

4.4 Complexity Analysis

The power of Shor’s algorithm lies in its dra-
matic reduction in computational complexity
compared to classical algorithms:
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Problem Classical Quantum

Integer Factorization exp(O(n1/3(log n)2/3)) O(n3)
DLP (mod prime) exp(O((log p)1/3(log log p)2/3)) O((log p)3)
ECDLP O(

↘
n) O((log n)3)

Table 1: Time Complexity Comparison: Classical vs. Quantum

This exponential speedup makes Shor’s algorithm a civilization-level threat to modern
cryptography.

5 Breaking RSA and ECC:
Shor in Action

Having deconstructed the general mechanism of
Shor’s algorithm, we now examine its specific ap-
plication against RSA and ECC.

5.1 Case Study 1: Factoring an RSA
Modulus

Consider factoring N = 21. We choose a = 2
and examine f(x) = 2x mod 21:

f(0) = 1

f(1) = 2

f(2) = 4

f(3) = 8

f(4) = 16

f(5) = 11

f(6) = 1

The period is r = 6. Since r is even, we com-
pute x = 26/2 = 8. Since 8 ↗↑ →1 (mod 21), we
find:

gcd(8→ 1, 21) = gcd(7, 21) = 7

gcd(8 + 1, 21) = gcd(9, 21) = 3

We have successfully factored 21 = 3⇒ 7.

5.2 Case Study 2: Solving the ECDLP

The attack on ECC uses a generalization of
Shor’s algorithm. We define a function:

f(x1, x2) = x1P + x2Q

This function is periodic with period vector
(r1, r2) such that:

r1P + r2Q = O

Substituting Q = kP :

r1 + r2k ↑ 0 (mod n)

From this, we solve for the secret key:

k ↑ →r1 · r
→1
2 (mod n)

5.3 A Unified Vulnerability: The Hid-
den Subgroup Problem

Both RSA and ECC vulnerabilities stem from
the fact that both problems are instances of the
Abelian Hidden Subgroup Problem (HSP) [12].
Shor’s algorithm is essentially an e!cient quan-
tum algorithm for solving the HSP for any finite
abelian group.

6 State of Quantum Hardware

The theoretical threat posed by Shor’s algorithm
depends on the development of large-scale, fault-
tolerant quantum computers.

6.1 The NISQ Era and its Challenges

We are currently in the Noisy Intermediate-Scale
Quantum (NISQ) era [19]. Today’s quantum
processors face challenges including:

• Decoherence: Loss of quantum properties
due to environmental interactions

• Gate Errors: Imperfect quantum opera-
tions that accumulate over time

• Connectivity: Limited qubit interactions
requiring complex routing
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6.2 Hardware Progress and Roadmaps

Major technology companies are pursuing di”erent approaches:
IBM: Targeting fault-tolerant system ”Starling” by 2029 with 200 logical qubits capable of 100
million operations [20].
Google: Demonstrated quantum supremacy with Sycamore and major progress in error correction
with Willow chip [21].

6.3 Resource Estimates for Breaking RSA-2048

Source Logical Qubits Physical Qubits Runtime

Beauregard (2003) 4,099 ⇑4 Million Days-Weeks
Gidney & Eker̊a (2021) ⇑20,000 ⇑20 Million 8 hours
Gidney (2025) N/A < 1 Million < 1 week

Table 2: Resource Estimates to Break RSA-2048

Recent algorithmic improvements have reduced estimated requirements by 20x, suggesting timelines
may be shorter than anticipated [22].

7 Post-Quantum Cryptogra-
phy

The inevitability of cryptographically relevant
quantum computers has catalyzed development
of Post-Quantum Cryptography (PQC) [23].

7.1 NIST PQC Standardization Pro-
cess

NIST initiated a public competition in 2016 to
standardize quantum-resistant algorithms [24].
In 2024, NIST published the first three o!cial
standards [25]:

• FIPS 203 (ML-KEM): Key-
Encapsulation Mechanism based on
CRYSTALS-KYBER

• FIPS 204 (ML-DSA): Digital Signature
Algorithm based on CRYSTALS-Dilithium

• FIPS 205 (SLH-DSA): Hash-based sig-
nature scheme SPHINCS+

In 2025, NIST selected HQC (Hamming
Quasi-Cyclic) as an additional code-based KEM
[26].

7.2 Leading PQC Algorithm Families

Lattice-Based Cryptography: Most promis-
ing family, based on problems like Learning With
Errors (LWE) [27].

Code-Based Cryptography: Based on
error-correcting codes, o”ering strong security
but large key sizes [28].

Hash-Based Signatures: Security relies
solely on hash function collision-resistance [29].

7.3 Migration Challenges

Transitioning to PQC faces several challenges
[30]:

• Performance and Size: Larger keys and
signatures

• Implementation Complexity: Complete
cryptographic inventory required

• Crypto-Agility: Need for systems that
can easily switch algorithms
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8 Future Outlook and Ethical
Implications

The development of cryptographically relevant
quantum computers poses profound ethical and
security challenges.

8.1 The ”Harvest Now, Decrypt
Later” Threat

The most immediate danger is the ”Harvest
Now, Decrypt Later” (HNDL) attack strategy
[31]. Adversaries are already intercepting and
storing encrypted data, waiting for quantum
computers to decrypt it. This makes PQC mi-
gration urgent for any long-lived sensitive data.

8.2 National Security and the Quan-
tum Arms Race

The quantum threat has triggered a global arms
race [2]. The US has established national policy
through NSM-10, mandating government-wide
PQC transition by 2035 [32].

8.3 Retroactive Decryption and Soci-
etal Trust

The prospect of retroactive decryption threat-
ens long-term digital privacy, potentially under-
mining trust in digital systems [33]. This could
have chilling e”ects on digital communication
and commerce.

9 Conclusion

Shor’s algorithm stands as a landmark achieve-
ment demonstrating how quantum computing
can upend established security principles. By ex-
ploiting hidden periodic structures in RSA and
ECC, it transforms intractable problems into
solvable puzzles for quantum computers.
This breakthrough presents a dual challenge:

engineering fault-tolerant quantum computers
and migrating global digital infrastructure to
post-quantum standards. We are living in a
unique moment where a theoretical algorithm
has preemptively rendered deployed security

technologies obsolete, forcing a global migration
driven by the silent threat of ”Harvest Now, De-
crypt Later” attacks.
The race between quantum code-breakers and

post-quantum code-makers will shape the land-
scape of digital security for generations to come.
The outcome will determine whether we enter
an era of unprecedented surveillance capability
or successfully transition to a quantum-resistant
cryptographic future.
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