
The P vs NP Problem

Alwin, University of Indonesia

1 Formal Definition of Complexity Classes P
and NP

The complexity class P (Polynomial time) consists of all decision problems
that can be solved by a deterministic Turing machine in polynomial time
with respect to the input size. That is, there exists a deterministic algorithm
that verifies the truth or falsity of the answer in on the order of nk steps for
some fixed k. For example, checking whether an integer is a perfect square
can be done efficiently using numerical methods (e.g., Newton’s method) in
polynomial time.

Conversely, the class NP (Nondeterministic Polynomial time) is the set
of decision problems whose solutions can be verified in polynomial time.
Formally, a language L is in NP if there exists a polynomial-time computable
relation R such that

w ∈ L ⇐⇒ ∃ y (|y| ≤ |w|k) and R(w, y) = true.

In other words, given a certificate y, one can check in polynomial time that
y indeed proves that w belongs to L. For instance, verifying that a number
a is composite can be done quickly if provided a nontrivial divisor b as a
certificate: if 1 < b < a and b | a, then a is composite. With this definition
it is clear that P ⊆ NP, since any deterministic polynomial-time algorithm
(for deciding L) can be viewed as a polynomial-time verifier that ignores the
certificate. The distinction lies in solution discovery: for P we can find a
solution deterministically in polynomial time, whereas for NP we only know
we can verify a candidate solution in polynomial time, possibly requiring
nondeterministic search to find it.

1

2 The Question “Does P = NP?” and Its Im-
portance

The question “Does P = NP?” asks whether every problem in NP (easy to
verify) is also in P (easy to solve). In other words: if a solution to a problem
can be checked quickly, does it imply we can also find it quickly? If P = NP,
then there exist polynomial-time algorithms for all NP problems, making
every NP problem efficiently solvable. Conversely, P ̸= NP means there are
problems in NP that truly cannot be solved as efficiently as they can be
verified.

This question is fundamental to theoretical computer science. P vs NP is
considered one of the most important and challenging questions in the field,
and is officially one of the seven Millennium Prize Problems of the Clay Math-
ematics Institute: anyone who proves either P = NP or P ̸= NP is awarded
USD1 000 000. Why does it matter? Because the theory of NP-completeness
and complexity-based cryptography have grown out of this question. If
P ̸= NP, then the security assumptions underlying many modern cryptosys-
tems (which rely on NP-hardness) are justified. If P = NP, the impact would
be revolutionary: virtually all hard computational tasks—from combinato-
rial optimization to theorem proving—would become efficiently solvable. As
Fortnow notes, if P = NP then “learning would become easy—near-perfect
visual recognition, automatic translation, and almost-perfect weather predic-
tion would be easy problems.” Because of its vast practical and theoretical
stakes—ranging from data security to artificial intelligence—the P vs NP
question sits at the very core of theoretical computer science.

3 Historical Background of the P vs NP Prob-
lem

The history of P vs NP begins with informal ideas of hard vs checkable
problems. Key milestones include:

• 1956: Kurt Gödel, in a letter to von Neumann, informally mentioned the
efficient proof search problem, anticipating the core of P vs NP, though no
formal definitions existed at the time.

• 1971: Stephen Cook published the landmark paper “The Complexity of
Theorem Proving Procedures” at STOC, formulating the P vs NP question
and proving that the Boolean satisfiability problem (SAT) is NP-complete.
Thus Cook showed that every problem in NP can be polynomially reduced

2

to SAT, and suggested that tautology testing (TAUT) likely cannot be
done in polynomial time, making it a candidate for P ̸= NP.

• 1972: Richard Karp extended Cook’s result by proving 21 classical combi-
natorial problems (such as CLIQUE, 3-Coloring, and the Traveling Sales-
man Decision variant) are NP-complete. Karp also introduced the stan-
dard notation “P” and “NP” and the definition of NP-completeness used
today.

• 1973: Leonid Levin (in the Soviet Union) independently arrived at similar
results by formalizing a “universal search problem” and demonstrating six
NP-complete examples, including SAT. Cook–Levin’s theorem thus credits
both Cook and Levin.

• 1979: Michael Garey and David Johnson published Computers and In-
tractability, a classic text compiling hundreds of NP-complete problems and
explaining polynomial-time reductions, cementing the NP-completeness
framework in computer science.

• 2000: The Clay Mathematics Institute designated P vs NP as one of its
Millennium Prize Problems, offering a $1 000 000 prize. Since then dozens
of proposed proofs (for both P = NP and P ̸= NP) have surfaced, none
accepted by the community.

4 Implications if P = NP or P NP
The consequences of either answer are profound across cryptography, opti-
mization, and artificial intelligence:

• If P = NP: Nearly every NP-complete problem would admit a polynomial-
time algorithm. As a result:

– Cryptography overhauled: One-way functions would not exist, under-
mining schemes like RSA and elliptic-curve cryptography that rely on
the hardness of factoring or discrete logarithms.

– Optimization revolutionized: All combinatorial optimization tasks—scheduling,
shortest paths in general graphs, integer programming—would be
solvable efficiently, replacing heuristic methods.

– Artificial intelligence transformed: Machine learning and AI tasks
that now require complex heuristics would become easy. As Scott

3

Aaronson (via Fortnow) observes, “learning would become easy—near-
perfect image recognition, language translation, and scientific predic-
tion would be trivial.”

– Industry impact: Practical problems in planning, resource allocation,
and cryptanalysis currently stuck in exponential time would suddenly
be tractable, dramatically boosting computational productivity.

• If P ̸= NP: The established hierarchy of difficulty persists. Consequences
include:

– Cryptographic security: The assumption P ̸= NP underpins one-way
functions, justifying modern public-key cryptography.

– Optimization challenges: NP-hard problems require special meth-
ods—heuristics, linear relaxations, approximation schemes (PTAS),
etc.—fueling research in approximation complexity.

– Scientific progress: We must rely on ad-hoc algorithms and new meth-
ods for specific problems. Complexity theory branches like PCP (Prob-
abilistically Checkable Proofs) and hardness of approximation arise
from this setting.

– Cryptomania world: As Impagliazzo’s classification suggests, we live
in a world where P ̸= NP, making public-key cryptography feasi-
ble—proof that “we can’t have it all”: intractable problems remain
hard, giving cryptography its power.

5 Approaches Tried and Their Failures
Many techniques have been attempted to prove or refute P vs NP, each
encountering formal barriers:

• Relativization (Diagonalization): Classic diagonalization methods from
the 1970s are blocked by the Baker–Gill–Solovay result (1975), which shows
there exist oracles A and B such that PA = NPA but PB ̸= NPB. Thus
any proof that “relativizes” (i.e., is oblivious to oracles) cannot resolve P
vs NP.

• Circuit Lower Bounds (Natural Proofs): In 1994 Razborov and
Rudich demonstrated that “natural proofs” for circuit lower bounds against
NP-complete functions would break widely believed pseudorandom gener-
ators—something considered impossible. This shows that standard com-
binatorial methods for proving super-polynomial circuit lower bounds are
insufficient.

4

• Specialized Circuit Complexity: Efforts to prove super-polynomial
circuit lower bounds (e.g. ACC0 vs NP) have succeeded only for restricted
circuit classes (constant-depth circuits), with no general lower bounds for
arbitrary circuits.

• Proof Complexity and Logic: Approaches using bounded arithmetic
and proof systems (Cook–Reckhow, Frege systems, etc.) have not yielded
conclusive results. Some independence results show that weak axiomatic
theories cannot prove certain statements about P vs NP, but full indepen-
dence remains unestablished.

• Other Methods: Probabilistic complexity (PCP, IP = PSPACE, etc.)
has illuminated NP’s structure but not solved P vs NP. Algebraic ap-
proaches (Aaronson–Wigderson) and communication complexity techniques
are active research areas but have not broken the core barrier.

Overall, conventional techniques face major obstacles—relativization and
natural proofs in particular—indicating that entirely new methods beyond
classical theory are required.

6 Supporting Arguments for Each Side
Although no rigorous proof exists, there are informal arguments for both
hypotheses:

• Arguments for P ̸= NP: Most complexity theorists favor P ̸= NP, citing:

– Lack of algorithms: After decades of intensive research, no sub-exponential
(2o(n)) algorithms are known for core NP-complete problems like SAT.
Scott Aaronson emphasizes that this long absence of breakthroughs
provides empirical evidence for P ̸= NP.

– Practical experience: Despite dramatic hardware advances, NP-complete
problems remain intractable in the worst case; state-of-the-art SAT
solvers and heuristics can be beaten by specially chosen instances.

– Proof barriers: We understand many formal barriers (relativization,
natural proofs) that any proof of P ̸= NP must overcome, suggesting
deep intrinsic difficulty.

– Theoretical consistency: Advanced results (e.g. PCP theorem) align
better with P ̸= NP, supporting the prevailing belief.

• Arguments for P = NP: There is no strong evidence for P = NP, but
some note:

5

– Logical possibility: In the absence of a proof for P ̸= NP, P = NP
cannot be ruled out by logic alone, however surprising it may be.

– Speculative models: Some conjecture polynomial algorithms may exist
in unexplored computational paradigms or require new algorithmic
paradigms—though none are known.

– Conceptual implications: If P = NP, one pays a high conceptual price:
as Fortnow (2009) wrote, “If P = NP, learning becomes easy. . . vision,
translation, and AI tasks become trivial,” yet we see no evidence of
such phenomena.

7 What Is Needed to Resolve This Problem
and Next Steps

Given current barriers, researchers believe entirely new paradigms are re-
quired:

• Non-relativizing, non-natural techniques: Proofs must avoid rela-
tivization and natural proofs. Algebraic methods (Aaronson–Wigderson)
and novel circuit communication techniques are under exploration.

• Geometric Complexity Theory (GCT): Mulmuley and Sohoni’s ap-
proach uses algebraic geometry and representation theory to prove circuit
lower bounds, leveraging deep symmetry properties of algebraic objects.

• Advanced proof theory: Investigations into stronger axiomatic systems
(bounded arithmetic) and novel logical frameworks aim to express P vs
NP in a way that might permit new proof techniques.

• Experimental/formal methods: Automatic theorem proving and ex-
haustive study of NP-complete instances with optimized SAT solvers may
reveal hidden structure and inform new conjectures.

• Interdisciplinary approaches: Exploring nonstandard physical models
(adiabatic quantum computing, topological quantum systems) could of-
fer fresh insights, as might speculative ideas about human brains as NP
machines.

• Further complexity theory: Strengthening circuit lower bounds for
broader classes and studying finer complexity classes (co-NP, PH, BPP)
can narrow possibilities and guide proof attempts.

6

In essence, conventional mathematical machinery is insufficient. A res-
olution likely demands radical new concepts, tools, and cross-disciplinary
collaboration; the road to a comprehensive proof remains long.

8 Evaluation of the Sufficiency of Current Math-
ematics

There is no consensus on whether modern mathematical foundations suffice.
Some view P vs NP like other open problems (Goldbach, Riemann)—solvable
by yet-undiscovered standard techniques. In this view the challenge is purely
combinatorial (deeper circuit analysis) and does not require new axioms.

However, the formal barriers (relativization, natural proofs) lead many
to believe P vs NP may be independent of current axiomatic systems. Scott
Aaronson has discussed independence scenarios, suggesting that without new
ideas we might need stronger logic or axioms. Razborov has illustrated that
absent novel insights, existing methods only “run in circles.” Geometric Com-
plexity Theory itself draws on algebraic geometry far beyond a standard
computer science curriculum.

Thus, many researchers believe solving P vs NP could require a massive
extension of mathematical theory—new axioms, principles in algebraic sym-
metry, or formal tools unknown today. Nonetheless, some maintain P vs
NP “is no more unapproachable than other natural mathematical questions”
and might ultimately be settled within Zermelo–Fraenkel set theory. What
is clear is that mathematicians must push well beyond current foundational
boundaries for a definitive resolution.

7

References
[1] Cook, S. A. (1971). The Complexity of Theorem Proving Procedures. Pro-

ceedings of the Third Annual ACM Symposium on Theory of Computing
(STOC).

[2] Karp, R. M. (1972). Reducibility Among Combinatorial Problems. In R. E.
Miller & J. W. Thatcher (Eds.), Complexity of Computer Computations
(pp. 85–103). Plenum Press.

[3] Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman.

[4] Razborov, A. A., & Rudich, S. (1994). Natural Proofs. Journal of Com-
puter and System Sciences, 55(1), 24–35.

[5] Fortnow, L. (2009). The Status of the P versus NP Problem. Communi-
cations of the ACM, 52(9), 78–86.

8

	Formal Definition of Complexity Classes P and NP
	The Question “Does P = NP?” and Its Importance
	Historical Background of the P vs NP Problem
	Implications if P = NP or P ≠ NP
	Approaches Tried and Their Failures
	Supporting Arguments for Each Side
	What Is Needed to Resolve This Problem and Next Steps
	Evaluation of the Sufficiency of Current Mathematics

