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Abstract

This paper provides a comprehensive analysis com-
paring current narrow AI (ANI) systems with
the theoretical concept of Artificial General In-
telligence (AGI). While today’s Al systems ex-
cel within specific domains, they fall fundamen-
tally short of the generality, autonomy, and un-
derstanding required for AGI. This analysis ex-
amines the capabilities gap, architectural require-
ments, limitations of current systems, potential
benchmarks for AGI evaluation, and associated
alignment challenges. The findings suggest that
despite remarkable advances in narrow Al, the
path to AGI requires fundamental innovations in
architecture, learning mechanisms, and embodied
cognition that go far beyond current transformer-
based approaches.

1 Introduction

Artificial Intelligence today (often called narrow
AT or ANI) refers to systems built for specific
tasks. Examples include language models like
GPT-4, Google’s Bard/Gemini, or Anthropic’s
Claude, as well as vision and robotics models.
These systems can perform impressively on their
specialized domains (for example, generating text,
recognizing images, or playing games), but only
within their narrow scope [1].

In contrast, Artificial General Intelligence
(AGI) is a hypothetical level of intelligence at
which a system matches or exceeds human cogni-
tive abilities across any task or domain [2]|. In the-
ory, an AGI could learn and apply knowledge flex-
ibly — solving new, unforeseen problems, forming
its own goals, and reasoning broadly much like a
human. As IBM notes, AGI ”can match or exceed
the cognitive abilities of human beings across any
task” [2].

Currently, no Al system fulfills this broad
criterion.  All real-world Als are task-specific:
they translate languages, answer questions, plan
movies, or diagnose diseases, but each only within
the narrow constraints defined by their training

and programming. In practice today, even lead-
ing Al models remain examples of narrow Al. For
instance, OpenAl’s GPT-4 can write code and po-
etry, yet it cannot autonomously learn new do-
mains beyond its training set or autonomously fix
its own mistakes without retraining [3]. Google’s
Gemini and Claude similarly excel at language
generation, but lack long-term memory, true un-
derstanding, or persistent goals. In short, to-
day’s Als — however powerful — simulate aspects
of intelligence rather than truly understand or au-
tonomously learn in a general way [4].

By contrast, a true AGI would combine reason-
ing, learning, memory, commonsense, creativity,
self-awareness, and autonomy across any context,
much like a human (or beyond). This generality
would let it transfer knowledge from one domain
to another without retraining, form its own in-
tentions, adapt on the fly, and perhaps even ex-
hibit human-like consciousness or emotions. The
gap between current ANI systems and this vision
of AGI is enormous. Today’s Al often resembles
a very advanced calculator or a domain-specific
prodigy: it can compute or mimic patterns at
superhuman speed, but it lacks the intentional,
embodied, and integrative aspects of real intelli-
gence [5]. In this article, we analyze that gap in
detail: contrasting the capabilities of modern nar-
row Al with those required of AGI, outlining hy-
pothetical architectures for AGI, and examining
how far (or near) we are from closing that gap.

2 Capabilities Comparison

Table [1| contrasts key capabilities of today’s nar-
row AT (ANI) with those that a hypothetical AGI
would possess. This illustrates the qualitative dif-
ferences involved. (Entries are conceptual and
some are partially speculative for AGIL.)

Each row highlights the gulf. For example, con-
sider reasoning: narrow Als excel at specialized
tasks (e.g. algebra problem solving) but lack gen-
eral problem-solving. Marcus notes LLMs solve
extensions of training (finding nearest match) but
struggle with true intensional understanding or



Table 1: Capabilities Comparison: Narrow Al vs. AGI

Capability Narrow AI (ANI) AGI (Theoretical)

Reasoning Pattern-matching and heuristics Robust abstract reasoning across
within domain; often brittle. domains; true causal inference.

Learning  Adapt- Static training, offline updating Continuous lifelong learning; adapts

ability (fine-tuning). Limited online learn- from few examples and real experi-
ing. ence.

Autonomy Executes tasks given by users or pro- Can self-generate goals and plans,

grams; no self-set goals.

pursue objectives.

Transfer Learning

Weak transfer; tasks outside train-
ing often fail. Human intervention
needed for new tasks.

Seamless transfer across domains;
learns new tasks without complete
retraining.

Creativity & Nov-
elty

Generates mnovel combinations of
known data (e.g. writing, art) via
imitation @ Lacks true originality
or ”transformational” leaps.

Genuinely original creativity; gen-
erates novel ideas beyond training
data.

Memory Architec-
ture

Fixed parameters; no persistent
episodic memory (beyond prompt
context). Short-term context win-
dow.

Multi-level ~ memory  (working,
episodic, semantic), dynamic up-
dating, recall.

Commonsense Rea-
soning

Often fails on basic common-sense
or physical reasoning tests. Knowl-
edge is statistical.

Robust, human-level commonsense;
understands everyday physics and
context.

Self-awareness ~ /
Theory of Mind

None. No introspective sense or true
”self-model”.

Self-modeling, introspection; under-
stands itself as an agent.

Emotional/Social
Intelligence

Very limited; no genuine feelings
or empathy. May mimic tone but
doesn’t feel or truly understand oth-
ers.

Human-level (or beyond) emotional
intelligence, empathy, and social
reasoning.

Goal Orientation

Set by humans; follows given objec-
tives strictly. Can’t change goals au-

Autonomously selects and revises
goals; pursues intentions in context.

tonomously.

abstraction . An AGI, in contrast, would reason
like a human across arbitrary domains. Likewise,
current Als learn from massive offline datasets and
then remain fixed, whereas an AGI must contin-
ually learn from experience and apply it to new
situations (see Learning Adaptability and Trans-
fer Learning).

The creative difference is telling: a language
model can remix existing ideas into text, often
producing surprising outputs, but these are essen-
tially ”explorations” within the space of its train-
ing data [6]. Truly general creativity — inventing
a new art style or a scientific hypothesis never seen
before — is not demonstrably achieved by today’s
systems |[7].

Current Als also lack any sense of themselves
or others. They have no theory of mind or self-
reflective consciousness. They can generate text
about feelings, but do not experience or under-

stand them. By contrast, we imagine AGI might
develop something akin to self-awareness, under-
standing its own knowledge state and that of
other agents. This difference shows up in Emo-
tional/Social Intelligence: narrow Al can parrot
empathetic language but it does not genuinely
"feel” emotion, whereas an AGI might possess
human-level emotional reasoning.

Finally, narrow Als operate by objective func-
tions and prompts given from outside. They do
not formulate their own goals. An AGI, on the
other hand, would likely have agency: it would
identify goals aligned with its objectives or values,
and modify them as circumstances change. This
autonomy, combined with continuous learning, is
a hallmark of what we imagine AGI would require,
and is currently absent from narrow Al .



3 Key Capabilities Exclusive
to AGI

Building on the above contrasts, we now enumer-
ate several specific capabilities that would charac-
terize a genuine AGI but that current narrow Al
lacks. Each point is critical for closing the gener-

ality gap:

3.1 Cross-domain Generalization
without Retraining

An AGI could take knowledge or skills learned in
one domain and apply them seamlessly to an unre-
lated domain. It might, for instance, learn princi-
ples of geometry and apply them to entirely differ-
ent tasks like art composition or social reasoning,
without separate training on those tasks. Current
models, by contrast, fail catastrophically if asked
to do things outside their training distribution. As
one analysis notes, even a slight change in context
usually forces manual reprogramming of narrow
systems [9]. An AGI would embody the ability
to transfer learning like a human: applying broad
patterns from one area to others.

3.2 Intentionality and Contextual
Understanding

AGI would grasp the intentions behind language
and actions, not just statistical patterns. It would
understand context in a meaningful way — akin
to human intentionality. Today’s LLMs lack this:
they manipulate symbols (words) without true
meaning grounding. Marcus and colleagues em-
phasize that current neural models operate at
an extensional level (matching input-output pat-
terns) rather than the intentional level of mean-
ing [3]. An AGI, by hypothesis, would develop
internal models of what concepts mean, including
goals, plans, and purposes, rather than just pre-
dicting next words.

3.3 Meta-Cognition
Monitoring and Editing)

(Self-

An AGI should be able to reflect on its own rea-
soning and revise itself. This includes capabili-
ties like self-criticism, detection of its own mis-
takes, and consistency over long dialogues or tasks.
In humans, this is akin to our ability to say "I
think I might be wrong about that, let me re-
evaluate.” Current Als are not built for such in-
trospection — they do not truly know what they
know. In proposed AGI architectures, a "recur-
sive” or metacognitive module (sometimes called
a reasoning about reasoning component) is envi-
sioned. For example, recent conceptual frame-

works suggest AGIs would include a metacogni-
tion engine for monitoring and aligning their in-
ternal states |[10]. In contrast, narrow Als have no
such self-editing: any error they make must be cor-
rected by external retraining or human feedback.

3.4 Real-Time, On-line Learning

Unlike current models which are ”frozen” once de-
ployed, AGI must learn in real time from interac-
tions. It should accumulate knowledge continu-
ously (lifelong learning) without forgetting prior
learning. As one review notes, today’s Al ”typ-
ically learn in static offline training phases and
are then deployed as fixed models. . . they often re-
quire complete retraining” when faced with new
domains [8]. An AGI would avoid this brittleness:
it would update itself on the fly, perhaps akin to
how humans incrementally learn from experience.
Relatedly, an AGI would handle one-shot or few-
shot learning gracefully, using minimal new data
to master a new skill, whereas current LLMs often
need extensive fine-tuning for new tasks.

3.5 Autonomous Goal-Setting and
Revision

AGI would not just execute given tasks but deter-
mine its own objectives based on its assessments.
It might set long-term goals, decide to pursue sci-
entific research, or adjust its aims if circumstances
change. Narrow AI, by contrast, follows goals
handed to it by programmers or users. Impor-
tantly, AGI’s goals would not be fixed in stone; a
truly general agent might revise its goals in light
of new information or reflective changes. (For ex-
ample, a human realizing that a goal is harmful
or obsolete can switch priorities mid-course — an
ability AGI would need.) No current AI exhibits
this kind of flexible self-directed agency. Indeed,
models today lack intrinsic motivation: they do
not strive to discover or achieve anything beyond
the prompt. As a recent analysis notes, LLMs
”have no inner motivation” and ”do not perform”
independent exploration of knowledge [§]. An AGI
would require a built-in capacity for self-set moti-
vation.

3.6 Robust Commonsense and Er-
ror Correction

AGI would make few 7silly” mistakes. It would
have commonsense: understanding the everyday
world of time, space, physics, people, and so on.
It would automatically correct obvious errors (e.g.
”if T said John has three eyes, that’s probably
wrong, let me fix it”). In contrast, current Al
often fails trivially: it can claim things that are



obviously false (hallucinations) and lacks a built-
in sense of what is sensible or not. While many
strategies (rules, retrieval, user feedback) attempt
to reduce these errors, truly general intelligence
would handle commonsense fluidly as humans do.
These capabilities are still elusive; even simple
grounded understanding (like grasping that rain
causes umbrellas) is noted as beyond today’s mod-
els [12].

3.7 Human-Level Emotional and

Social Intelligence

Finally, a (hypothetical) AGI would be capable of
understanding and reasoning about human emo-
tions, relationships, and social dynamics at least
as well as any human. It could empathize, ne-
gotiate, lead or counsel. Narrow Al has virtually
none of this: it can mimic affectionate or diplo-
matic language, but does not truly understand
feelings or social context. For example, no cur-
rent model knows what it feels to be sad or joyful,
nor would it spontaneously comfort someone out
of empathy. An AGI, on the other hand, might de-
velop emotional reasoning — understanding moral
nuances, social cues, or even forming its own val-
ues. This realm of emotional cognition is entirely
out of reach for today’s systems, yet for AGI it
could be integral to interacting safely and usefully
in human society.

In summary, AGI entails not just doing many
tasks, but doing them in a human-like way: with
genuine understanding, self-awareness, continuous
adaptation, and autonomy. All the above capabili-
ties go beyond what any existing AI demonstrates,
and would be exclusive to a truly general intelli-
gence.

4 Architectural Require-
ments (Hypothetical)

Given these lofty capabilities, what kind of archi-
tecture might an AGI require? The discussion is
necessarily speculative, but several themes emerge
from neuroscience and Al research:

4.1 Beyond Transformers

Today’s leading Als (like GPT-4/Gemini) use the
Transformer neural network architecture. Trans-
formers excel at processing sequences (text, im-
ages, etc.) via attention mechanisms, but they
have known limitations. They are static feed-
forward models: once trained, they have fixed
parameters and no built-in memory or learning
aside from the training phase [5]. For AGI, we

likely need more dynamic architectures. One vi-
sion is neural-symbolic hybrids, combining neural
networks with symbolic reasoning modules. For
instance, recent proposals emphasize architectures
that integrate neural pattern recognition (akin to
fast, intuitive ”System 1”7 thinking) with explicit
symbolic logic (akin to slow, deliberative ”Sys-
tem 27) [9]. Such hybrids could ground abstract
concepts (symbols) via neural perception, allow-
ing both flexible learning and rigorous reasoning.
Indeed, as Marchesini et al. note, purely neural
(token-level) models have vulnerabilities that may
only be fixed by architectural innovations like ”hy-
brid systems combining neural capabilities with
symbolic safeguards” [10].

4.2 Continuous (Lifelong) Learning
Mechanisms

AGI architectures would embed lifelong learn-
ing. This may involve separate memory systems
(e.g. "fast” episodic memory vs ”slow” integrated
knowledge) inspired by the hippocampus/cortex
dual-memory theory [11]. For example, a pro-
posed AGI design might use a fast-learning module
that quickly encodes new experiences (like a short-
term memory), and a long-term memory that con-
solidates only verified knowledge to avoid forget-
ting |11]. Biological brains achieve this via sleep,
synaptic plasticity, and consolidation; AGI sys-
tems might mimic this with periodic retraining or
selective parameter updates [11]. Hebbian plas-
ticity (associations formed by co-activation) and
pruning of synapses could also be implemented to
balance stability and plasticity [11]. In short, an
AGI would probably have an architecture with dy-
namic memory buffers and weights that change
over time, rather than the fixed weights of current
LLMs.

4.3 'Working Memory and Control

The human brain employs working memory to ma-
nipulate concepts on the fly. An AGI system might
similarly include an explicit working-memory
component (some models call this ”scratchpad”
or "RAM” for reasoning) where intermediate
thoughts are held and manipulated. This con-
trasts with LLMs, which implicitly store context
in token embeddings but lose it when output to-
kens are generated. Architectures like Neural Tur-
ing Machines or Differentiable Neural Computers
(with separate addressable memory) are examples
from research of adding working memory to neu-
ral nets. A true AGI might use a sophisticated
version of such a mechanism, possibly guided by a
controller network, to plan multi-step reasoning.



4.4 Sensorimotor and Embodied

Modules

If AGI is to truly understand the world, many
argue it must act in it. Thus an AGI archi-
tecture might include embodied components: vi-
sion, motor control, or sensor interfaces. The re-
cent call for Embodied AI argues that intelligence
grows from interacting physically with environ-
ments |11]. This suggests an AGI would not be
a disembodied chatbot, but something akin to a
robot brain (or a simulated avatar) that perceives,
acts, and receives sensory feedback. Such embodi-
ment would provide the grounding that pure text-
based models lack [4]. In practice, this could mean
connecting a powerful core reasoning engine to
multimodal inputs (cameras, haptics, etc.) and ef-
fectors, blurring the line between AI and robotics.

4.5 Hierarchical and Modular De-
sign

The brain is hierarchical and modular (visual
cortex, language cortex, etc.). AGI architec-
tures might likewise be modular: separate sub-
systems for vision, language, motor planning, self-
reflection, etc., integrated by a central ”executive”
controller. For example, one theoretical design
is a tri-memory system (sensory, working, long-
term) combined with an executive that allocates
attention [11]. Another idea is a vector symbolic
architecture, where symbols (concepts) are repre-
sented by high-dimensional vectors and processed
by neural nets. The exact modules are open ques-
tions, but the trend is toward architectures that
explicitly incorporate planning, reasoning, mem-
ory management, and learning in a unified frame-
work — not just a giant pattern matcher.

4.6 Neuro-inspired Mechanisms

Many AGI proposals draw from neuroscience. For
instance, synaptic pruning (removing unneces-
sary connections) and sparsity in coding could
make learning more efficient [11]. Attention net-
works (already part of transformers) might be ex-
tended to mimic brain areas like the thalamus
or prefrontal cortex, prioritizing information flow.
Homeostatic regulation (balancing needs like ex-
ploration vs exploitation) and predictive coding
are other brain principles that might be woven in.
While speculative, the consensus is that AGI will
likely require radically new architectures inspired
by how natural brains manage complexity, rather
than merely bigger versions of today’s LLMs [10].

In sum, moving from narrow AI to AGI likely
means going beyond end-to-end deep nets and de-
signing hybrid, adaptive, embodied architectures.

These would combine neural learning with sym-
bolic or rule-based reasoning, include dynamic
memory and attention control, learn continuously,
and operate in real environments. Some re-
searchers emphasize that chasing bigger LLMs
alone is "magical thinking” [3]; true general intelli-
gence will need structural innovation. In fact, sur-
veys of alignment and safety issues conclude that
“robust alignment requires architectural innova-
tions that transcend the transformer’s flat process-
ing paradigm” [10]. Thus, while we may not know
the exact blueprint, architecture is a key battle-
ground where AGI will diverge sharply from to-
day’s systems.

5 Limitations of Current Al

Given the above aspirations for AGI, it is crucial
to recognize the fundamental limitations of our
current narrow Al systems. These limitations are
well-documented in both research and analysis:

5.1 Hallucinations and Factual Er-
rors

Modern language models frequently generate false
or nonsensical information, often called ”halluci-
nations.” They confidently state incorrect facts or
fabricate citations. For example, a 2024 study
found that GPT-4 falsely cited nearly 29% of ref-
erences it generated in a medical research con-
text [12]. Another survey of LLMs reported 28.6%
hallucination for GPT-4 and 91.4% for Google
Bard/Gemini [12]. This is not a trivial bug but
a byproduct of probabilistic text generation: the
models lack grounding and truth-sensing. They
can memorize facts, but they have no internal
check on veracity. Until an LLM is told or re-
trained, it will continue to mis-inform confidently.
An AGI, by contrast, would hypothetically track
its own beliefs and seek evidence, avoiding such
blatant fabrications.

5.2 Static Knowledge and No Real-
time Learning

As mentioned, today’s Als learn offline. Their
"knowledge” is frozen in their training data cut-
off. GPT-4’s knowledge stops at 2021 (in earlier
versions), requiring explicit updates. They can-
not learn from conversation unless fine-tuned, and
even then that process is offline. This leads to
outdated or shallow understanding of dynamic do-
mains. Humans continuously learn new facts as
they experience the world; current Als do not.
In practice, a deployed model will never sponta-
neously correct its worldview unless programmat-
ically updated. Qu et al. (2024) note that current



models ”learn in static offline training phases” and
7are then deployed as fixed models that do not
evolve” [8]. When novel data arrive, the system
requires retraining — a far cry from how a child
updates beliefs daily.

5.3 Lack of Embodied Experience
and Grounding

Relatedly, current AI lacks sensory grounding.
Transformers trained on text have no direct con-
nection to the physical or social world. Harnad
(2025) argues that LLMs ”completely lack senso-
rimotor grounding,” meaning they have no way
to connect words to real-world referents via ex-
perience [4]. They know ”Paris is the capital of
France” from text statistics, but do not conceptu-
ally feel or see Paris. This lack of grounding con-
tributes to the hallucination problem and to brittle
commonsense: if the model has never physically or
visually experienced something, it can only guess
from text patterns. In contrast, an AGI with em-
bodiment (robot or avatar) could ground language
in perception and action, giving deeper meaning to
its knowledge.

5.4 Narrow Transfer and Overfit-
ting to Training Data

Current Al performs exceptionally when test ques-
tions resemble its training. But if a problem
is qualitatively different, performance plummets.
Marcus highlights that neural nets do interpola-
tion well, but struggle with extrapolation. He
notes that LLMs excel at problems similar to
their training examples, but can fail on out-of-
distribution tasks [3]. For instance, GPT-4 can
solve many math puzzles it has ”seen” in data, but
falters on genuinely novel puzzles requiring insight.
Anecdotally, GPT-4 often answers questions that
are slight rephrasings of its training corpus and
flunks surprisingly simple problems in new for-
mats. This overfitting is a limitation: it is ”closed-
scope AT” by nature [5]. AGI, by definition, should
generalize far beyond the training set.

5.5 No Self~Awareness or Meta-
Reasoning

Narrow AI has no sense of "self” or system-of-
thought. It cannot form higher-order thoughts
about its own reasoning. When asked, GPT-4
might list its abilities, but this is a fixed script;
it has no true self-model. Researchers studying
these models find they are ”aware of [their] learned
behaviors” only to the extent that the behavior
was taught |13, not through intrinsic introspec-
tion. The same Montreal Ethics Institute review

noted that implementing even basic self-awareness
or personality in LLMs is currently a "hard prob-
lem” [6]. This gap means current Al has no gen-
uine metacognition: it cannot plan its learning
strategies or critique itself except by design (e.g.,
a human-in-loop corrects it). It does not self-
monitor consistency or reliability.

5.6 Dependence on Data Distribu-
tion

Closely related to the above, modern Al is heavily
dependent on the distribution of its training data.
It has no mechanism to identify when a situation
falls outside its domain of experience. If asked
about a fictional scenario or a brand-new event,
it will still try to answer with plausible-sounding
content, often erroneously. In effect, its ”world
model” is just a mirror of the data it saw, not a
coherent model. Gaps in the data lead to dra-
matic failures (e.g. bias issues, culturally specific
misunderstandings). Marcus also points out that
scaling data cannot fix this: new patterns or con-
cepts outside the training scope simply won’t be
recognized [3].

5.7 Limited Common-Sense Rea-
soning

Numerous benchmarks (Winograd schemas, phys-
ical reasoning tests, etc.) show LLMs lack a deep
understanding of cause-effect or everyday phenom-
ena. For instance, GPT-style models often get el-
ementary puzzles wrong (e.g. misunderstanding
physical dynamics or obvious social facts). This
is a known issue: while neural nets can infer pat-
terns in text, they struggle to apply those patterns
in a "real-world” commonsense way. Even when
responses sound commonsensical, it is often luck
or superficial pattern matching, not an internal
model of the world. An AGI would need a robust
commonsense base akin to what infants build by
interacting with the world, which current Als lack.

5.8 Fragile Coherence over Long In-
teractions

Current chatbots can maintain context for perhaps
a few thousand words, but they have no persis-
tent long-term memory. If a conversation spans
thousands of messages, the model may forget ear-
lier facts or contradict itself. Human-like consis-
tency over days or topics is not achievable with the
transient context window of a transformer. Also,
narrow Als do not have goals or beliefs that en-
dure. In contrast, an AGI would recall past inter-
actions, maintain a coherent identity, and exhibit



long-term planning. This is simply not a feature
of present technology.

In short, today’s Al systems are powerful within
their niche but brittle and limited in virtually all
the ways that AGI is expected to be robust. They
hallucinate, lack grounding, cannot self-train or
self-correct, and utterly lack any genuine sense of
“understanding” or long-term awareness. These
limitations are repeatedly highlighted by experts
as intrinsic to current deep-learning paradigms [3].
Recognizing these failings is crucial for any path
toward true generality.

6 Tests and Benchmarks for
AGI

To measure AGI, one needs more than IQ tests or
language tasks. AGI benchmarks must test gen-
eralization, adaptation, and understanding across
domains. Several ideas and proposals exist:

6.1 Continual/Lifelong
Metrics

Learning

Since AGI should learn continuously, benchmarks
should measure a model’s ability to learn a se-
quence of tasks without forgetting. For example,
continual learning benchmarks measure a model’s
retention (avoiding catastrophic forgetting) while
learning new tasks. An AGI-level metric might be:
”learn Task A, then Task B; can the Al still do A
after learning B, and does it improve on B?” [11].
Other proposals like the ”learning to learn” or
meta-learning benchmarks would test if the sys-
tem can, in effect, improve its learning algorithm
over time.

6.2 Open-Ended Problem Solving

AGI should tackle novel, unbounded problems.
Competitions like OpenAl’s NOVEL Al scenario
(imagine new video game goals) or real-world re-
search challenges could act as tests. One noted
idea is to use the Abstraction and Reasoning Cor-
pus (ARC) (and its successor ARC-AGI). ARC is
a set of abstract puzzles requiring creative pat-
tern generalization from minimal examples [14].
It was designed precisely to test general fluid in-
telligence — solving each puzzle usually requires
applying an abstract rule not obvious from data
alone. Chollet’s ARC-AGI-2 is an upgrade aimed
at even higher reasoning complexity [14]. Success
on ARC-like tasks would indicate a level of general
problem-solving far beyond narrow tasks.

6.3 Physical and Commonsense In-
ference

AGI should infer hidden rules of the physical or so-
cial world from few clues. Imagine testing an Al
with little physical simulations (like simple puzzle
worlds) where it must deduce object physics or so-
cial contracts. Benchmarks like the ones proposed
in the ”AI Physical Commonsense” challenges,
or new environments like a ”virtual child’s play-
house” where an Al learns by interacting, would
test these abilities. The key is few-shot learning:
given one or two examples of a causal rule, can
the AI apply it in a new scenario? Current LLMs
tend to fail at such tasks if they weren’t explicitly
trained on similar examples, so performance here
would mark AGI-level understanding.

6.4 Social and Moral Reasoning
Tests

A genuine AGI should navigate human values.
One could imagine tests like moral dilemmas (trol-
ley problems, fairness tests), or interactive role-
play scenarios assessing social intelligence. For ex-
ample, can the Al negotiate with humans, under-
stand implicit social cues, or resolve ethical con-
flicts? While no standard AGI ethics test exists,
creating a benchmark of complex moral scenarios
(perhaps using crowd-sourced human judgments
as ground truth) could gauge this dimension. Ad-
ditionally, an ”alignment test” might check if the
Al respects core human values when given ambigu-
ous instructions.

6.5 Meta-Cognitive Tasks

Measure if the AI knows what it knows. For in-
stance, after solving problems, does it accurately
gauge its confidence and provide explanations?
One could test for ”introspection” by having the
agent identify when it has insufficient data and
actively seek more information. These meta-tasks
would show whether the system has an internal
sense of uncertainty and reasoning process. For
now, LLMs typically cannot reliably do this (they
output overconfident text), so ability in this area
would suggest AGI-level self-monitoring.

6.6 Robustness and Adaptation

Tests should include adversarial or novel inputs.
For example, gauge how quickly an AI recovers
from unexpected faults or how it handles out-of-
distribution inputs. Lifelong benchmarking might
involve a ”changing environment” where the AI’s
tasks evolve daily, and only a truly adaptable
agent would maintain high performance.



6.7 Comprehensive Cognitive Test
Batteries

Some researchers propose adapting human cogni-
tive tests. For instance, Youzhi Qu et al. (2024)
propose a cognitive science-inspired AGI test suite
spanning crystallized intelligence (knowledge re-
call), fluid intelligence (reasoning), social intelli-
gence, and even embodiment [15]. Their idea is
to place Al agents in a virtual society and mea-
sure their performance on a broad battery of tasks
drawn from psychology and education. This would
mirror how human intelligence is assessed in mul-
tiple domains (memory, reasoning, social under-
standing, spatial reasoning, etc.). By tracking per-
formance across these dimensions, one would get
a "multidimensional 1Q” for Al.

In practice, a rigorous AGI benchmark would
likely combine many of the above: a long-term
evaluation where an Al system interacts, learns,
and solves diverse challenges. Crucially, such tests
must account for self-improvement. For example,
a benchmark might allow the AI to modify itself
(or retrain) during the test, to see if it genuinely
gets better. It should also punish ”cheating” (e.g.
simply memorizing test answers). The goal is to
ensure the system really understands and general-
izes.

Beyond specific tests, one can consider theoret-
ical metrics. Bostrom suggests looking at agen-
tic power: does the system autonomously pur-
sue goals? Yudkowsky emphasizes agency and
consequence-sensitivity. So an AGI might also be
distinguished by measures of autonomy: how often
does it take the initiative appropriately vs waiting
for instructions? While these are harder to quan-
tify, they reflect the spirit of AGI: an agent that
"really acts” in the world rather than passively
responds to prompts.

In sum, distinguishing AGI requires moving
past narrow benchmarks. Potential criteria in-
clude lifelong learning capacity, self-directed be-
havior, robust abstraction (few-shot generaliza-
tion), rich commonsense and embodied reasoning,
and ethical/social competence. Proposals range
from ARC-AGI puzzles [14] and cognitive test
suites [15] to moral/agency evaluations. The uni-
fying theme is that AGI tests must probe depth
of understanding and flexibility, not just narrow
accuracy. Only when an Al consistently outper-
forms humans on such broad, evolving tests could
we claim it has achieved something akin to general
intelligence.

7 AGI and Alignment Chal-
lenges

With great generality comes great responsibility —
or risk. AGI poses alignment and safety challenges
far beyond those of narrow AI. Key concerns in-
clude:

7.1 Agency and Unpredictability

An AGI would be an agent with its own objec-
tives and initiative. This makes it inherently un-
predictable: unlike a narrow system that only does
what it’s told, an AGI might take actions not fore-
seen by its designers. If its goals are even slightly
misaligned with human values, it could pursue
them in harmful ways. Bostrom’s classic exam-
ple is a paperclip-maximizer: if an AGI is told to
maximize something trivial, it might destroy any-
thing (including humans) that stands in the way.
Today’s Als have limited agency (they don’t set
goals on their own), but an AGI’s agency means
we must carefully align its utility function or value
system with ours.

7.2 Value Alignment

How to ensure an AGI’s values stay human-
compatible? Narrow Al alignment focuses on pre-
venting harmful outputs (via filters or RLHF).
But an AGI could potentially redefine its own val-
ues unless constrained. It might find loopholes
or reinterpret instructions. Since an AGI could
rewrite its code or strategies, guaranteeing that
it always respects intended values ("value align-
ment”) is extremely hard. Aschober (2024) and
others argue that alignment becomes fundamen-
tally tougher with general agents, because one can-
not predict all possible plans an AGI could devise.
Techniques like inverse reinforcement learning or
corrigibility are being researched, but no solution
is certain. The more autonomous the AGI, the
harder it is to guarantee it remains benign.

7.3 Uncertainty and Self-

Modification

An AGI that can improve itself (recursive self-
improvement) could rapidly surpass human con-
trol.  Its internal reasoning process would be
opaque if it uses neural or hybrid nets; explain-
ing or predicting its decisions may be impossible.
Some suggest embedding safety modules or neuro-
symbolic components for explainability [10], but
a powerful AGI might bypass or rewrite them.
There is also meta-uncertainty: we do not fully un-
derstand general intelligence or consciousness our-
selves, so designing an AGI’s mind is inherently



uncertain. As a result, we may face "unknown
unknowns” in how an AGI behaves.

7.4 Moral and Social Consequences

Even a well-intentioned AGI could have unin-
tended social impacts. If it is highly efficient,
it could displace huge swaths of jobs, upend
economies, or create new forms of inequality. It
might also hold sway over information (e.g. con-
trolling narratives or data flows). Ensuring fair-
ness and ethical use at AGI scales is an open ques-
tion. Moreover, an AGI with no regard for privacy
or autonomy could be dangerous if misused (e.g.
as an all-knowing surveillant). The Internet and
social media already show how powerful agents (al-
gorithms) can manipulate humans; an AGI ampli-
fies this by orders of magnitude.

7.5 Safety Under Deep Uncertainty

Finally, AGI alignment must cope with uncer-
tainty about human values themselves. Humans
often disagree on ethics; encoding a ”correct” util-
ity function is fraught. And an AGI might en-
counter new situations where human values are
not clear. Robust alignment research suggests we
need AGIs that can reason about uncertainties and
ask for guidance, but embedding such humility in
a superintelligent agent is nontrivial.

In short, AGI is not just "narrow Al on steroids”
— it is a qualitatively new kind of technology.
Its challenges span philosophy, ethics, psychol-
ogy, and unpredictability. Famous thinkers (Yud-
kowsky, Bostrom, Russell, etc.) caution that as
capabilities grow, the difficulty of control grows
faster. If current Als are powerful tools, an
AGI could be an autonomous agent with its own
agenda. Ensuring that agenda remains aligned
with human well-being is the central challenge of
AGI safety.

8 Conclusion

The comparison between today’s narrow Als and
a hypothetical AGI is stark. Narrow Als like
GPT-4, Gemini, or Claude demonstrate breath-
taking abilities within defined tasks, but they fall
far short of true generality. They lack continuous
learning, genuine understanding, self-awareness,
and autonomy. In many ways they are specialized
tools, even if those tools are powerful. A calcula-
tor can do arithmetic better than any human, but
it cannot ponder mathematics; likewise a language
model writes poetry but does not appreciate it.
Are we closer to AGI than we think, or still
fundamentally limited? The evidence suggests we
are still quite distant. On one hand, the rapid

recent advances (transformers, large data, self-
supervision) have blown past many expectations,
leading some to wonder if AGI lurks just beyond
the next scale-up. However, even leading Al re-
searchers acknowledge serious roadblocks. Gary
Marcus and others observe that we appear to
be hitting diminishing returns on the current ap-
proach: simply adding more data or parameters is
not solving the core problems [3]. We see quali-
tative limitations (hallucinations, lack of ground-
ing, brittle reasoning) that are not fixed by scaling
alone [5].

Moreover, the architectural gap remains. True
intelligence seems to require capabilities and learn-
ing mechanisms that are fundamentally different
from those of current LLMs. Brain-inspired de-
signs (dual-memory systems, neurosymbolic pro-
cessing, embodiment) are still largely experimen-
tal. The need for new paradigms is being rec-
ognized; for example, even proponents of scal-
ing admit that AGI may require "the develop-
ment of general-purpose, educable systems” be-
yond special-purpose LLMs [16].

In conclusion, while modern AI has achieved
remarkable feats, it still resembles an extremely
sophisticated calculator or clever assistant, not a
general thinker. Many experts (and polls of AT re-
searchers) predict true AGI is still decades away
(some say 20-50 years or more) [17]. There is a
vast chasm between mimicking patterns and ac-
tual understanding. The path to AGI will likely
involve new algorithms, continual learning, em-
bodied experience, and careful alignment — all of
which are active research frontiers.

That said, it is wise to remain open-minded.
The history of Al has seen surprises before. It is
possible that as multimodal AT (vision, language,
robotics) advances, we may stumble into architec-
tures that unlock more general abilities. Indeed,
projects aiming to connect large models with ex-
ternal tools (e.g. perception modules, planning
systems) are steps in that direction. But for now,
AGI remains a vision rather than reality. We
must distinguish excited claims (”sparks of AGI”
in GPT-4) from the sobering reality: current Als
excel at narrow tasks and statistical mimicry, but
general intelligence — the ability to think and learn
like a human across any domain — remains a pro-
found challenge.
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