
A Deterministic Polynomial-Time
Approach to SAT

Alwin
Universitas Indonesia

May 19, 2025

Abstract

The question of whether P equals NP remains one of the most profound open problems
in computer science. In particular, the Boolean Satisfiability Problem (SAT) serves as the
canonical NP-complete problem: if SAT admits a deterministic polynomial-time algorithm,
then P = NP follows. This paper provides an English-language exposition of a proposed
exploration toward proving a polynomial-time deterministic solution for SAT. The document
begins with a concise overview of computational complexity theory, followed by an expanded
treatment of SAT logic, including formal definitions, examples, and key logical principles.
Historical approaches to SAT (DPLL, CDCL, randomized heuristics) are reviewed, along
with their theoretical limitations. Potential new paradigms—ranging from hidden-structure
exploitation to algebraic and topological methods—are discussed. Finally, the intellectual,
technical, and psychological qualities necessary for researchers in this domain are outlined,
and an exploratory roadmap for future work is proposed. The goal of this paper is both
to translate and consolidate existing insights and to stimulate further research by providing
detailed logical analysis of SAT and its structural properties.

1 Introduction
The P versus NP question asks whether every problem whose solution can be verified in poly-
nomial time by a deterministic Turing machine can also be solved in polynomial time by such
a machine. Formally, P is the class of decision problems solvable in deterministic polynomial
time, whereas NP is the class of decision problems verifiable in deterministic polynomial time
given a certificate. Since Cook and Levin independently showed that Boolean Satisfiability
(SAT) is NP-complete, SAT has become the central problem in the study of P versus NP. A
deterministic polynomial-time algorithm for SAT would resolve P = NP affirmatively and yield
polynomial-time solutions for all problems in NP.

In this paper, we present an English-language LaTeX version of an Indonesian technical
report, expanding especially the section on SAT logic. We aim to ensure that no words are
truncated and that the SAT discussion includes detailed logical explanations. We begin by
reviewing complexity-theoretic background, then delve deeply into the logic of SAT, followed
by historical algorithmic approaches. Next, we analyze why existing approaches fail to guar-
antee polynomial time in the worst case and survey potential new paradigms. We conclude by
outlining the qualities required for successful research in this area and propose an exploratory
research roadmap.

1

2 Background on Complexity Theory

2.1 Classes P and NP

In computational complexity theory, the class P consists of all decision problems that can be
solved by a deterministic Turing machine in time bounded by a polynomial function of the
input size. Formally, a language L is in P if there exists a deterministic Turing machine M and
a polynomial p(n) such that for every input x, machine M halts in at most p(|x|) steps and
accepts x if and only if x ∈ L.

Conversely, the class NP comprises those decision problems for which a “yes” answer can
be verified by a deterministic Turing machine in polynomial time, given an auxiliary certificate
(or witness). That is, L is in NP if there exists a polynomial-time deterministic verifier V (x, c)
and a polynomial q(n) such that

x ∈ L ⇐⇒ ∃ c
(
|c| ≤ q(|x|) ∧ V (x, c) = TRUE

)
.

Since any deterministic algorithm that solves a decision problem in polynomial time can also
verify its own solutions, it follows that P ⊆ NP.

2.2 NP-Completeness and the Cook–Levin Theorem

A decision problem L is NP-hard if every problem in NP can be reduced to L via a polynomial-
time many-one reduction. If, in addition, L itself belongs to NP, then L is called NP-complete.
The Cook–Levin Theorem, independently discovered by Stephen Cook (1971) and Leonid Levin
(1973), established that the Boolean Satisfiability Problem (SAT) is NP-complete. More pre-
cisely, Cook showed that for any nondeterministic polynomial-time computation, one can con-
struct in polynomial time a Boolean formula φ that is satisfiable if and only if the computation
accepts. As a corollary, if there existed a deterministic polynomial-time algorithm for SAT,
then every problem in NP could be solved in deterministic polynomial time, implying P = NP.

3 The Boolean Satisfiability Problem (SAT)
This section provides an expanded and detailed examination of SAT logic. We begin with
formal definitions of Boolean formulas, literals, clauses, and Conjunctive Normal Form (CNF).
We proceed to discuss fundamental logical concepts such as truth tables, the resolution rule, and
basic algorithmic operations (e.g., unit propagation). Throughout, we aim to clarify precisely
what is meant by “satisfiability” and how logical structure influences algorithmic behavior.

3.1 Boolean Formulas, Literals, and Clauses

A Boolean variable is a variable that can take one of two values: TRUE or FALSE. A literal is
either a Boolean variable x or its negation ¬x. A clause is a disjunction (logical OR) of one or
more literals. For example, the clause

(x ∨ ¬y ∨ z)

contains three literals: x, ¬y, and z. A clause evaluates to TRUE if and only if at least one of
its literals evaluates to TRUE under a given assignment of Boolean variables.

A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction (logical AND) of
clauses. That is, a CNF formula Φ has the form

Φ = C1 ∧ C2 ∧ · · · ∧ Cm,

where each Ci is a clause. For Φ to evaluate to TRUE, each clause Ci must evaluate to TRUE
under the chosen assignment. We write Vars(Φ) to denote the set of all variables appearing in
Φ. If n = |Vars(Φ)|, then there are 2n possible assignments of truth values to the variables.

2

3.1.1 Example of a CNF Formula

Consider the CNF formula

Φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)
∧ (¬x1 ∨ ¬x3).

This formula contains three clauses:

C1 = (x1 ∨ ¬x2 ∨ x3), C2 = (¬x1 ∨ x2 ∨ x3), C3 = (¬x1 ∨ ¬x3).

To check whether Φ is satisfiable, one can systematically examine assignments to the variables
(x1, x2, x3). For instance, the assignment x1 = TRUE, x2 = FALSE, x3 = TRUE renders:

C1 = (TRUE ∨ TRUE ∨ TRUE) = TRUE

C2 = (FALSE ∨ FALSE ∨ TRUE) = TRUE

C3 = (FALSE ∨ FALSE) = FALSE

Since C3 is FALSE, that assignment does not satisfy Φ. By exploring further assignments, one
finds that x1 = FALSE, x2 = TRUE, x3 = FALSE satisfies all three clauses:

C1 = (FALSE ∨ FALSE ∨ FALSE) = FALSE,

which actually fails as well. Continue until discovering a satisfying assignment, such as x1 =
FALSE, x2 = TRUE, x3 = TRUE, which yields:

C1 = (FALSE ∨ FALSE ∨ TRUE) = TRUE
C2 = (TRUE ∨ TRUE ∨ TRUE) = TRUE
C3 = (TRUE ∨ FALSE) = TRUE

Thus Φ is indeed satisfiable.

3.2 Truth Tables and Boolean Logic

At the heart of SAT is the classical two-valued Boolean logic. A truth table for a Boolean
expression enumerates all possible combinations of input values and the corresponding output
of the expression. For a single variable x, its truth table is:

x x

FALSE FALSE
TRUE TRUE

x ¬x

FALSE TRUE
TRUE FALSE

For two variables x and y, the truth tables for conjunction (∧) and disjunction (∨) are:

x y x ∧ y

FALSE FALSE FALSE
FALSE TRUE FALSE
TRUE FALSE FALSE
TRUE TRUE TRUE

x y x ∨ y

FALSE FALSE FALSE
FALSE TRUE TRUE
TRUE FALSE TRUE
TRUE TRUE TRUE

More complex Boolean formulas can be evaluated by systematically applying these funda-
mental operations. In SAT, one is given a Boolean formula (often directly in CNF) and asked
whether there exists an assignment of truth values to all variables that makes the formula
evaluate to TRUE.

3

3.3 Formal Definition of SAT

Formally, the Boolean Satisfiability Problem (SAT) is defined as:

SAT =
{
⟨Φ⟩ : Φ is a CNF formula that is satisfiable

}
.

Here, ⟨Φ⟩ denotes an encoding of the CNF formula Φ as a binary string. The decision question
is: Given a CNF formula Φ (encoded as a string), is there an assignment of truth values to its
variables such that Φ = C1 ∧ C2 ∧ · · · ∧ Cm evaluates to TRUE?

If the answer is YES, we say that Φ is satisfiable. Otherwise, we say that Φ is unsatis-
fiable. SAT was the first problem proven to be NP-complete (Cook 1971; Levin 1973). Its
NP-completeness implies that if SAT lies in P, then P = NP.

3.4 Logical Principles in SAT

We now discuss several key logical principles that underlie algorithmic techniques for SAT:
(a) Resolution Rule. The resolution rule is a sound and complete inference rule for propo-

sitional logic in CNF. Given two clauses

C1 = (ℓ ∨ L), C2 = (¬ℓ ∨ M),

where ℓ is a literal and L, M denote disjunctions of other literals, the resolution rule infers
the resolvent

R = (L ∨ M).

Intuitively, if ℓ must be true to satisfy C1, then ℓ must be false to satisfy C2, and vice versa;
hence any satisfying assignment must satisfy at least one literal in L ∨M . Repeatedly
applying resolution can lead to deriving the empty clause (a clause with no literals), which
indicates unsatisfiability.

(b) Unit Clause and Unit Propagation. A unit clause is a clause with exactly one
literal, e.g., (ℓ). If a formula contains a unit clause (ℓ), then in any satisfying assignment,
literal ℓ must be assigned TRUE (otherwise the clause would evaluate to FALSE). Unit
propagation (also called Boolean Constraint Propagation, BCP) systematically assigns ℓ =
TRUE whenever it encounters a unit clause (ℓ), simplifies all clauses accordingly (removing
those that are satisfied, and removing ¬ℓ from clauses where it appears), and repeats until
no unit clauses remain or an empty clause is produced. Unit propagation is a fundamental
subroutine in DPLL and CDCL algorithms.

(c) Pure Literal Elimination. A literal ℓ is pure in a CNF formula if ℓ appears in some
clauses but its negation ¬ℓ does not appear in any clause. If ℓ is pure, one may safely assign
ℓ = TRUE without losing any potential satisfying assignment, because setting ℓ = FALSE
could only affect clauses that contain ℓ but would not help satisfy any clause containing
¬ℓ (since such clauses do not exist). The pure literal rule eliminates all clauses containing
a pure literal.

(d) Implication Graphs and Conflict Analysis. Modern SAT solvers based on Conflict-
Driven Clause Learning (CDCL) build an implication graph that captures the cascade
of variable assignments under unit propagation. Each time a variable is assigned (either
by decision or by propagation), an implication edge is drawn. When a conflict (empty
clause) arises, the solver analyzes the implication graph to identify a subset of assignments
(a conflict clause) that must be avoided in subsequent search branches. This conflict clause
is then added to the formula, effectively pruning a portion of the search space.

(e) Backtracking and Backjumping. The search tree for SAT is formed by making deci-
sions on variable assignments. In DPLL, if one assignment branch eventually leads to con-
flict (unsatisfiability), the algorithm backtracks and tries the opposite assignment for the
most recently decided variable. CDCL generalizes this by backjumping non-chronologically

4

to an earlier decision level determined by conflict analysis, thereby avoiding exploring large
parts of the search tree that are known to be unsatisfiable.

3.5 Formalizing SAT Logic

Let Φ = C1∧C2∧· · ·∧Cm be a CNF formula over variables x1, x2, . . . , xn. Define an assignment

A : {x1, x2, . . . , xn} −→ {TRUE, FALSE}.

For a literal ℓ, which is either xi or ¬xi, we write A(ℓ) to mean:

A(ℓ) =


TRUE, if ℓ = xi and A(xi) = TRUE,

TRUE, if ℓ = ¬xi and A(xi) = FALSE,

FALSE, otherwise.

Each clause Cj = (ℓj,1 ∨ ℓj,2 ∨ · · · ∨ ℓj,kj
) evaluates under assignment A as

Cj(A) = ℓj,1(A) ∨ ℓj,2(A) ∨ · · · ∨ ℓj,kj
(A).

The entire CNF formula satisfies

Φ(A) = C1(A) ∧ C2(A) ∧ · · · ∧ Cm(A).

Hence Φ is satisfiable precisely if there exists an assignment A such that Φ(A) = TRUE, i.e.,
Cj(A) = TRUE for all 1 ≤ j ≤ m.

3.6 Complexity of SAT and NP-Completeness

Since one can verify that an assignment A satisfies Φ by evaluating each clause in time O(mkmax)
(where kmax is the maximum clause length), SAT is in NP. The Cook–Levin Theorem shows
that every problem in NP can be reduced to SAT in polynomial time, making SAT NP-complete.
As a consequence, a deterministic polynomial-time algorithm for SAT would imply P = NP;
conversely, if P ̸= NP, then no such algorithm can exist.

4 Historical Approaches to Solving SAT
Over the past five decades, researchers have developed a variety of algorithmic techniques to
solve SAT. While these techniques are highly effective on many practical instances, none has
been proven to run in polynomial time on all SAT formulas. We summarize the main historical
approaches below.

4.1 Backtracking and the DPLL Algorithm

The Davis–Putnam–Logemann–Loveland (DPLL) algorithm, introduced in the early 1960s, is
a recursive backtracking procedure for CNF-SAT. The high-level pseudo-code is as follows:

Function DPLL(Φ):
1. Unit Propagation. While there exists a unit clause {ℓ} in Φ,

Φ ← UnitPropagate(ℓ, Φ).

2. Pure Literal Elimination. While there exists a literal ℓ that is pure in Φ,

Φ ← PureLiteralAssign(ℓ, Φ).

5

3. Check for Empty Formula or Empty Clause.
(a) If Φ has no clauses (all clauses have been satisfied), return TRUE.
(b) If Φ contains an empty clause (a clause with no literals), return FALSE.

4. Branching. Choose a literal ℓ from some clause in Φ (often via a heuristic). Recursively:

return
(
DPLL(Φ ∧ {ℓ}) ∨ DPLL(Φ ∧ {¬ℓ})

)
.

In each recursive call, DPLL simplifies the formula by assigning ℓ = TRUE (or ¬ℓ = TRUE),
performing unit propagation and pure literal elimination, and then recursing. Although DPLL
significantly prunes the search space via these inferences, its worst-case time complexity remains
O(2n) for n variables, since in the worst case it may essentially enumerate all 2n assignments.

4.2 Conflict-Driven Clause Learning (CDCL)

In the 1990s, researchers developed the Conflict-Driven Clause Learning (CDCL) paradigm,
which extends DPLL with clause learning, non-chronological backtracking (backjumping), and
sophisticated variable-decision heuristics such as VSIDS (Variable State Independent Decaying
Sum). The CDCL workflow is as follows:

1. Decision. Assign a truth value to an unassigned variable x based on a heuristic.
2. Propagation. Perform unit propagation until no unit clauses remain or a conflict arises.
3. Conflict Analysis. If a conflict (empty clause) is found, analyze the implication graph

to learn a new conflict clause that prevents the same conflict from reoccurring. Add this
learned clause to Φ.

4. Backjump. Determine the highest decision level to which one must return (based on the
learned clause) and backjump to that level, unassigning all variables assigned after that
level.

5. Repeat. Continue with new decisions, propagation, and learning until the formula is
either discovered to be UNSAT (unsatisfiable) or all variables are assigned consistently
(satisfiable).

CDCL solvers, such as GRASP (Marques-Silva & Sakallah, 1996, 1999), zChaff (Zhang et
al., 2001), MiniSat (2003), and many others, dominate modern SAT competitions. Empirically,
CDCL can solve industrial instances with millions of clauses and hundreds of thousands of
variables. Nonetheless, CDCL does not guarantee polynomial-time performance in the worst
case; worst-case formulas can force the solver to generate exponentially many learned clauses
or perform exponentially many branches.

4.3 Randomized and Local Search Heuristics

Randomized algorithms and local search heuristics have also been applied to SAT:
• Schöning’s Random Walk Algorithm (1999). Starting from a uniformly random

assignment for n variables, if the formula is not satisfied, pick a random unsatisfied clause
and flip a random literal in that clause, repeating for a bounded number of steps. This
algorithm solves k-SAT in expected time O

(
(2(1 − 1/k))n

)
; for 3-SAT, the running time

is roughly O(1.334n). Although this improves over naive O(2n) enumeration for small k,
it remains superpolynomial.

• Walker-Based Heuristics (GSAT, WalkSAT). These local search procedures start
from an initial random assignment and iteratively pick a variable to flip so as to maximize
the number of satisfied clauses (greedy improvement), sometimes with random steps to
escape local minima. Such methods often solve large random or structured instances
quickly but lack completeness: they can fail to find a satisfying assignment even if one
exists, and they offer no polynomial-time guarantees.

6

• Derandomized Variants. Researchers have attempted to derandomize Schöning’s al-
gorithm by constructing deterministic “covering codes” or pseudorandom sequences of
assignments. To date, the best-known deterministic algorithm for general SAT still runs
in time roughly O(1.5n), far from polynomial.

4.4 Algebraic and Reductive Approaches

Some research has explored reductions from SAT to other mathematical frameworks:
• Algebraic Encodings. Techniques such as the Nullstellensatz method translate a CNF

formula into a system of polynomial equations over a finite field. A formula is unsatisfiable
if and only if the corresponding polynomial system has no common zero. While algebraic
proof systems (e.g., Gröbner basis) provide proof complexity insights, they do not yield
deterministic polynomial-time SAT algorithms.

• Constraint Satisfaction Problem (CSP) Reductions. SAT can be viewed as a
special case of CSP. Conversely, some CSP instances can be reduced to SAT. Although this
perspective has led to specialized SAT encodings for problems in graph theory, scheduling,
and verification, no general polynomial-time algorithm has emerged.

5 Why Existing Approaches Fail to Guarantee Polynomial Time
Despite decades of algorithmic advances, no deterministic polynomial-time algorithm for SAT
is known. The main barriers include:

(a) Relativization Barriers. Baker, Gill, and Solovay (1975) showed that there exist oracles
A and B such that PA = NPA but PB ̸= NPB. This implies that any proof technique
for P ̸= NP or P = NP that “relativizes” (i.e., works in the presence of arbitrary oracles)
cannot resolve the question unconditionally. Most classical algorithmic techniques up to
the 1970s relativize, indicating a deep barrier.

(b) Natural Proofs Barrier. Razborov and Rudich (1997) formulated the concept of a nat-
ural proof, which abstracts many combinatorial argument techniques used to prove lower
bounds on circuit complexity. They showed that any natural proof for superpolynomial
lower bounds would imply the existence of strong pseudorandom generators, which in turn
would break widely believed cryptographic assumptions (e.g., the hardness of factoring).
Hence, natural proof techniques are unlikely to establish that SAT cannot be solved in
polynomial time (if strong cryptography holds).

(c) Worst-Case Exponential Search Space. At its core, SAT is about exploring a space
of 2n assignments. Deterministic algorithms must somehow avoid checking an exponen-
tial fraction of assignments on certain pathological inputs. Existing methods—be they
branching (DPLL/CDCL), algebraic, or local search—either explicitly or implicitly prune
portions of the search space, but none can rule out exponentially many assignments in all
cases. Some formulas are specifically engineered to defeat common heuristics by hiding
crucial structural information (e.g., expensive unsatisfiable cores or minimal backdoors).

(d) Limits of Heuristic Guidance. Heuristics such as VSIDS, random branching, and
variable activity scoring have dramatically improved practical performance. Nevertheless,
there are explicit families of formulas (e.g., certain “Tseitin tautologies” on sparse graphs,
random k-CNF at the phase transition) for which these heuristics offer no polynomial-
time guarantee. In the worst case, branching decisions can force the solver to explore an
exponentially large search tree.

(e) Lack of Global Structure Awareness. Most current SAT solvers build purely syntactic
representations of the formula (e.g., clause–literal incidence lists) and rely on local infer-
ences (unit clauses, pure literals, resolution). They lack a global, high-level perspective
on the solution space (e.g., geometric shape of the solution set or high-level algebraic in-

7

variants). Without such global structure, it is difficult to systematically avoid exponential
blowup.

6 Potential New Paradigms
Given the limitations of conventional methods, several novel and more speculative paradigms
have been proposed. Although none has yielded a deterministic polynomial-time SAT solver to
date, they offer possible routes for future breakthroughs.

6.1 Exploiting Hidden Structural Properties

Empirical evidence suggests that many “hard” SAT instances contain hidden structural features:
• Backdoor Variables. A backdoor set is a small subset of variables B ⊆ Vars(Φ) such that

once one fixes assignments to the variables in B, the remaining formula becomes “easy”
(e.g., Horn, 2-SAT, or acyclic). Identifying a minimal backdoor set is itself NP-hard, but
if one can efficiently discover a small backdoor for typical instances, one could solve SAT
by branching only on those variables and solving the residual instance in polynomial time.
Research into structural decomposition, graph partitions, and variable–clause incidence
graphs aims to detect backdoors via approximation or heuristics.

• Community Structure. The clause–variable incidence graph of a CNF formula often
exhibits a “community structure” in real-world instances, where variables and clauses are
clustered into loosely connected communities. By exploiting this modular organization,
one might solve each community independently or apply divide-and-conquer strategies.
However, constructing guaranteed polynomial-time decompositions for all formulas re-
mains open.

• Unsatisfiable Cores and Minimality. For unsatisfiable formulas, the unsatisfiable core
is a minimal subset of clauses that is itself unsatisfiable. Some research attempts to identify
large unsatisfiable cores quickly (e.g., via conflict-driven learning) to prune search. For
satisfiable formulas, searching for “near-unsatisfiable” substructures may guide the solver
toward a satisfying assignment by revealing tightly constrained variable clusters.

6.2 Geometric and Topological Representations

Viewing the space of all assignments {0, 1}n as the vertices of an n-dimensional hypercube offers
a geometric perspective:

• Solution Polytopes. Consider the set of all real-valued vectors in [0, 1]n that satisfy the
linear inequalities derived from each clause (e.g., a clause (xi∨¬xj∨xk) corresponds to xi+
(1−xj)+xk ≥ 1). The intersection of these half-spaces is a convex polytope whose vertices
are assignments that satisfy all clauses. One might attempt to traverse this polytope
or apply linear programming relaxations and rounding schemes. However, integrality
gaps and the presence of “fractional” vertices typically prevent a direct polynomial-time
characterization of the Boolean SAT solutions.

• Topological Data Analysis. By constructing a simplicial complex whose vertices cor-
respond to assignments and where simplices connect assignments that differ in a small
number of bits, one obtains a topological space encoding adjacency and connectivity of
solutions. Tools from persistent homology could detect “holes” or “clusters” in the solu-
tion space that might indicate combinatorial bottlenecks. Translating these topological
invariants into algorithmic shortcuts is still an open research direction.

• Discrete Geometric Entropy. One may define an entropy measure on subsets of as-
signments, reflecting how “spread out” satisfying assignments are in the hypercube. If
one can compute or approximate this entropy efficiently, it might guide search toward

8

denser regions of solutions. However, computing such entropy exactly is P-hard, and
approximations may not suffice to guarantee polynomial-time behavior.

6.3 Algebraic and Symbolic Methods

Algebraic encodings translate SAT into systems of equations or polynomial ideals:
• Polynomial Nullstellensatz. One can associate each clause to a polynomial over a

finite field F such that a Boolean assignment corresponds to a solution in {0, 1}n. For
example, the clause (xi ∨ xj ∨ ¬xk) translates to the polynomial

fi,j,k(xi, xj , xk) = (1− (1− xi)(1− xj)xk).

The formula is unsatisfiable if and only if 1 lies in the ideal generated by all such polyno-
mials. A Nullstellensatz proof of unsatisfiability provides polynomials gi such that∑

i

gi(x) · fi(x) = 1,

certifying that there is no common zero. Although this yields an algebraic proof system,
the size of Nullstellensatz certificates can be exponentially large. Current algorithms for
finding them (e.g., via Gröbner bases) take superpolynomial time in the worst case.

• Polynomial-Equation Solvers. Some approaches reduce SAT to solving multivariate
polynomial equations over F2 or other fields. Linearization techniques (e.g., multilinear
monomial expansions) often produce exponential blowup. Similarly, the use of semi-
definite programming (SDP) relaxations (e.g., from MAX-SAT approximations) cannot
guarantee an exact Boolean solution in polynomial time.

• Abstract Algebraic Structures. One can attempt to embed Boolean logic into more
exotic algebraic objects, such as finite rings, lattices, or Boolean algebras with additional
operations. The hope is that those abstract representations might reveal new invariants
or transformation rules that collapse the search space. To date, no such algebraic model
has yielded a general polynomial-time SAT algorithm.

6.4 Entropy-Based and Information-Theoretic Measures

The notion of deterministic entropy attempts to quantify the amount of information required
to specify a solution:

• Shannon versus Deterministic Entropy. Shannon entropy measures expected in-
formation content under a probability distribution. In contrast, deterministic entropy
measures, for a given formula Φ, the minimum number of bits required to pin down a
satisfying assignment. If one could compute or tightly bound deterministic entropy in
polynomial time, one might infer that many assignments can be ruled out simultaneously.
However, computing deterministic entropy exactly is as hard as counting the number of
satisfying assignments (SAT), which is P-complete.

• Information Propagation. Some algorithms attempt to use information from random
sampling or approximate counting to guide search. For instance, belief propagation (BP)
in random k-SAT attempts to estimate marginal probabilities of variables. While BP can
solve certain sparse instances effectively, it fails to provide worst-case polynomial-time
guarantees.

6.5 Causal Logic Networks and Graphical Models

Examining logical dependencies among variables can be framed in terms of Bayesian networks
or Markov Logic Networks:

9

• Bayesian Network Reductions. One may construct a directed acyclic graph (DAG)
with nodes representing variables and arcs representing implications induced by clauses.
For example, the clause (¬xi ∨ xj) implies xi =⇒ xj . By analyzing strongly connected
components and reachability in this implication graph, one can identify forced assignments
and contradictions. For Horn-SAT (where each clause has at most one positive literal), this
approach yields a polynomial-time algorithm. However, arbitrary CNF formulas do not
yield acyclic implication graphs, and cycles can encode arbitrary NP-hard subproblems.

• Markov Logic and Probabilistic Inference. Markov Logic Networks (MLNs) combine
first-order logic with probabilistic graphical models. One might encode each clause as a
weighted formula in an MLN and attempt to compute a most probable assignment (MAP
inference). Although MAP inference in general MLNs is NP-hard, approximate inference
techniques (e.g., loopy belief propagation, variational methods) can sometimes identify
satisfying assignments for structured SAT instances. Yet, these methods do not guarantee
polynomial-time success in the worst case.

6.6 Machine Learning–Guided SAT Solving

Recent work integrates machine learning models to guide SAT solvers:
• NeuroSAT (Selsam et al., 2018). NeuroSAT is a message-passing neural network

trained to classify small SAT instances as satisfiable or unsatisfiable. Although NeuroSAT
demonstrated the ability to predict satisfiability and even construct assignments for cer-
tain instances, its running time scales poorly with problem size and does not guarantee
polynomial time.

• Learning Heuristics. Some solvers use reinforcement learning or graph neural net-
works to learn variable selection and clause deletion policies. While learned heuristics
can outperform handcrafted ones on specific benchmarks, they do not alter the funda-
mental worst-case complexity: adversarially chosen formulas can force such heuristics into
exponential-time behavior.

• Hybrid Architectures. By combining classical CDCL engines with neural modules
that predict branching decisions, one aims to accelerate search in practice. Theoretical
analysis of such hybrids remains nascent; it is not yet clear whether these methodologies
can overcome exponential barriers in the worst case.

7 Deep Dive into SAT Logic and Expanded Discussion
This section delves further into the logical underpinnings of SAT. We elaborate on:

• The structure of CNF formulas and how clause interactions dictate the shape of the search
space.

• Resolution proof systems and their limitations in polynomial-size proofs.
• Detailed examples of unit propagation, pure literal elimination, and conflict analysis.
• Illustrations of minimal unsatisfiable cores and their combinatorial properties.
• The role of backdoor sets and how they relate to subalgebraic structures.

7.1 Clause–Variable Interaction Graphs

Given a CNF formula Φ over variables x1, . . . , xn, define its bipartite incidence graph GΦ =
(Vx ∪ Vc, E) where:

Vx = {vi : 1 ≤ i ≤ n}, Vc = {cj : 1 ≤ j ≤ m},

and there is an edge (vi, cj) ∈ E if and only if variable xi (or its negation) appears in clause
Cj . An alternative representation is the primal graph (or variable–interaction graph), whose
vertices are variables xi and edges connect xi and xj if they appear together in some clause.

10

• If the primal graph has bounded treewidth, one can solve SAT in polynomial time via
dynamic programming over tree decompositions. In particular, if the primal graph is a
tree (treewidth 1), SAT reduces to Horn-SAT or 2-SAT, both solvable in polynomial time.
However, computing treewidth is NP-hard in general, and many SAT instances have large
treewidth.

• The incidence graph can also exhibit modular structure. For example, in industrial ver-
ification instances, the graph often decomposes into loosely connected subgraphs. One
can attempt to identify community partitions using spectral clustering or modularity op-
timization, then solve each component in isolation followed by global consistency checks.
Although promising in practice, worst-case instances can force these methods to combine
exponentially many components.

7.2 Resolution Proof Complexity

The resolution proof system is central in proof complexity, providing both lower bounds for
unsatisfiable formulas and insights into solver behavior.

• A resolution proof for an unsatisfiable CNF formula Φ is a sequence of clauses D1, D2, . . . , Dt

such that for each Dk, either Dk is an original clause of Φ or Dk is derived by resolving
two earlier clauses. The goal is to derive the empty clause. The size of a resolution proof
is the number of resolution steps (or number of clauses) in the proof.

• Haken (1985) proved that certain families of formulas (the pigeonhole principle formulas)
require exponential-size resolution proofs. More generally, Urquhart (1995) and others
established exponential lower bounds on tree-like and general resolution proofs for various
formulas. Since CDCL solvers implicitly construct resolution proofs (learning conflict
clauses corresponds to deriving resolvents), these lower bounds imply that certain families
of unsatisfiable formulas force CDCL to generate exponentially many learned clauses.

• Conversely, for formulas with “small” resolution refutations, CDCL solvers can find a
proof in time polynomial in the size of that proof, though not necessarily guaranteeing
a priori that one exists for all formulas. This shows a deep connection between proof
complexity and solver complexity: polynomial-size proofs imply polynomial-time solving
in the worst case for that formula family.

7.3 Detailed Example: Unit Propagation and Conflict

Consider the following CNF formula:

Φ = (x ∨ y) ∧ (¬x ∨ z) ∧ (¬y ∨ z) ∧ (¬z).

We walk through a DPLL-style exploration with unit propagation:
1. Initially, Φ has the unit clause (¬z). Hence, by unit propagation, assign z = FALSE and

simplify:
(¬x ∨ z) 7→ (¬x ∨ FALSE) = (¬x), (¬y ∨ z) 7→ (¬y).

The other clause (x ∨ y) remains unchanged. So the simplified formula becomes

Φ′ = (x ∨ y) ∧ (¬x) ∧ (¬y).

Now we have two unit clauses (¬x) and (¬y). We propagate (¬x), assigning x = FALSE,
which simplifies (x∨y) to (FALSE∨y) = (y). Then we propagate (¬y), assigning y = FALSE,
which simplifies (y) to (FALSE), an empty clause emerges, indicating conflict.

2. At this point, conflict analysis would identify that the assignments z = FALSE, x = FALSE,
and y = FALSE together cause the empty clause. A conflict clause can be learned by
resolving the original clauses that participated in the unit propagations:

(¬z) , (¬x ∨ z) , (¬x),

11

which yields the learned clause (¬z ∨ x) (intuitively, “if z = FALSE then x must be
TRUEȷ).Similarly, resolving(¬z) with (¬y ∨ z) and (¬y) yields (¬z ∨ y). Since x and y
both appear in (x ∨ y), further resolution can derive (¬z ∨ x ∨ y). The precise conflict
clause depends on the chosen learning scheme (e.g., 1-UIP).

3. With a learned clause in hand, a CDCL solver can backjump to the appropriate decision
level. If z = FALSE was forced by a decision or was a propagated assignment at decision
level 0, then the solver would conclude Φ is UNSAT. In a DPLL (non-CDCL) solver, one
would simply backtrack on the last decision; here, since there was no explicit decision
before unit propagation, one concludes unsatisfiability directly.

7.4 Minimal Unsatisfiable Cores and Their Structure

A formula Φ is minimally unsatisfiable if Φ is unsatisfiable, but removing any clause from
Φ makes it satisfiable. Studying minimally unsatisfiable formulas provides insight into the
combinatorial hardness of SAT:

• For a minimally unsatisfiable formula with m clauses over n variables, a classic result
(Tarsi’s Lemma) states that m ≥ n+1. Intuitively, there are more constraints than degrees
of freedom. Constructing explicit families of minimally unsatisfiable formulas (e.g., hitting
formulas or Tseitin tautologies) yields hard instances for resolution and CDCL.

• Identifying an unsatisfiable core (not necessarily minimal) can be done by tracking which
original clauses contributed to the derivation of the empty clause during conflict analysis.
While computing a minimal unsatisfiable core is NP-hard, obtaining an approximate core
suffices to prune search in many solvers.

• The structure of unsatisfiable cores can highlight “bottleneck” subformulas. For instance,
a large cactus-like core (where clauses overlap primarily on small subsets of variables) may
indicate that one needs to flip assignments in a carefully coordinated manner—beyond
simple local repairs—to escape unsatisfiability.

7.5 Backdoor Sets and Subformula Reduction

A set of variables B is a backdoor set for Φ relative to a polynomial-time decidable class C (e.g.,
2-SAT, Horn, XOR-SAT) if, once one assigns values to all variables in B, the simplified formula
Φ|B belongs to C and hence is solvable in polynomial time. Formally:

Φ|B =
{

C \ {ℓ : ℓ is falsified by the assignment to B}
}

after removing all clauses satisfied by the assignment to variables in B. If |B| = k, then
one can solve Φ by enumerating all 2k assignments to B and, for each assignment, solve the
resulting C-instance in polynomial time. Thus if B is small (e.g., k = O(log n)), this yields a
polynomial-time algorithm. However:

• Finding a smallest backdoor set is itself NP-hard. Researchers have developed parameter-
ized algorithms that find backdoor sets of size k in time O∗(ck), but this is exponential in
k. If k grows linearly in n (as in worst-case formulas), no polynomial-time result follows.

• Some classes of formulas admit small backdoors naturally (e.g., instances from hardware
verification often reduce to Horn after setting a few key variables). Quantifying the
backdoor size for random or adversarial formulas remains an active area of investigation.

8 Required Qualities for SAT and P vs NP Research
Researchers aiming to prove that SAT is solvable in deterministic polynomial time (i.e., that
P = NP) must combine several intellectual, technical, and psychological attributes:

(a) Deep Theoretical Understanding. One must be fluent in:

12

• Formal models of computation (Turing machines, Boolean circuits, RAM models).
• Complexity classes, reductions, and proof complexity (resolution, cutting planes,

communication complexity).
• Algebraic complexity (polynomial representations, Gröbner bases) and proof systems

(Nullstellensatz, polynomial calculus).
• Graph theory, spectral methods, and structural parameters (treewidth, clique-width).
• Information theory (Shannon entropy, Kullback–Leibler divergence, deterministic en-

tropy).
• Algebraic geometry and combinatorial topology (simplicial complexes, homology).

(b) Technical Proficiency. A researcher must be skilled in:
• Algorithm design (branching algorithms, parameterized complexity, approximation

algorithms).
• Implementation of SAT solvers (DPLL, CDCL engines) and empirical benchmarking.
• Building and analyzing data structures for graph algorithms, incidence graphs, and

clause databases.
• Experimental platforms for large-scale SAT instances, including parallel and dis-

tributed solvers.
• Machine learning frameworks for learning heuristics or graph embeddings (e.g., Py-

Torch, TensorFlow, graph neural networks).
(c) Collaborative and Interdisciplinary Mindset. P vs NP research often crosses tradi-

tional boundaries. Collaborations between:
• Theoretical computer scientists and mathematicians (proof complexity, combina-

torics).
• Algebraists (commutative algebra, algebraic geometry) and logicians (model theory,

proof systems).
• Statisticians and data scientists (entropy measures, sampling, approximate counting).
• Machine learning researchers (neural heuristics, reinforcement learning).
• Practitioners from hardware verification, formal methods, and constraint program-

ming.
(d) Persistence and Psychological Resilience. The P vs NP problem has resisted solu-

tions for decades. Researchers must:
• Accept the possibility of repeated setbacks and negative results.
• Maintain patience and humility, recognizing that incremental progress (e.g., lower

bounds for restricted models) can still yield valuable insights.
• Cultivate creativity to envision nontraditional approaches (e.g., geometric topology,

causal inference).
• Retain optimism without falling to overconfidence, given the rich history of proposed

“proofs” that turned out to be incorrect.
(e) Imagination and Creativity. Breaking the P vs NP barrier likely requires insights

outside conventional complexity-theoretic frameworks. Creative leaps might involve:
• Inventing new algebraic or combinatorial invariants that tightly characterize SAT

complexity.
• Developing novel topological descriptors of solution spaces and mapping them to

tractable problems.
• Conceiving hybrid symbolic–numeric methods that harness continuous relaxations

while preserving discrete correctness.
• Pioneering information-theoretic frameworks that quantify logical constraints in an

actionable manner.

13

9 Exploratory Research Roadmap
Based on the survey of existing methods and proposed paradigms, we outline a multi-phase
roadmap for exploratory research aimed at discovering a deterministic polynomial-time algo-
rithm for SAT (or, alternatively, establishing stronger evidence that none exists).

9.1 Phase I: Comprehensive Literature Reconciliation

1. Survey Foundational Texts. Thoroughly review classical references:
• Sipser, M. (2012). Introduction to the Theory of Computation. Cengage Learning.
• Arora, S., & Barak, B. (2009). Computational Complexity: A Modern Approach.

Cambridge University Press.
• Papadimitriou, C. (1994). Computational Complexity. Addison-Wesley.
• Cook, S. A. (1971). “The complexity of theorem-proving procedures.” In Proceedings

of the Third Annual ACM Symposium on Theory of Computing, 151–158.
• Levin, L. A. (1973). “Universal sequential search problems.” Problems of Information

Transmission, 9(3):265–266.
2. Review Modern Surveys. Examine contemporary research on proof complexity, pa-

rameterized complexity, and SAT-solver heuristics:
• Razborov, A. A., & Rudich, S. (1997). “Natural proofs.” Journal of Computer and

System Sciences, 55(1):24–35.
• Baker, T., Gill, J., & Solovay, R. (1975). “Relativizations of the P =? NP question.”

SIAM Journal on Computing, 4(4):431–442.
• Marques-Silva, J. P. M., & Sakallah, K. A. (1996). “GRASP: A search algorithm for

propositional logic.” In Proceedings of ICCAD, 28–31.
• Selsam, D., Bjørner, N., Liang, P., & Song, D. (2018). “Learning a SAT solver from

single-bit supervision.” In International Conference on Machine Learning (ICML).
3. Consolidate Key Insights. Summarize known lower bounds in proof complexity (e.g.,

pigeonhole principle, clique tautologies), parameterized complexity results (e.g., W[1]-
hardness of certain SAT variants), and structural theorems (e.g., Schaefer’s dichotomy
theorem for Boolean CSP).

9.2 Phase II: Structural and Topological Analysis of SAT Instances

1. Data Collection and Benchmarking. Assemble a diverse SAT benchmark suite in-
cluding:

• Industrial CNF instances from hardware and software verification (e.g., from the
SAT Competition archives).

• Random k-SAT formulas at phase transition densities.
• Crafted hard instances (e.g., Tseitin formulas on expander graphs, cryptographic

combiners).
2. Graph-Theoretic Characterization. For each instance, compute structural graph

parameters:
• Treewidth and pathwidth of the primal graph (exact or approximate).
• Community structure metrics (e.g., modularity, conductance).
• Variable–clause incidence density, maximum degree, and spectrum of adjacency ma-

trices.
3. Topological Data Analysis. Construct simplicial complexes of solution subspaces:

• Build a graph H where each vertex is a candidate assignment (e.g., among samples),
with edges connecting assignments at Hamming distance 1 that both satisfy Φ.

• Compute persistent homology (Betti numbers) at varying Hamming-distance thresh-
olds to detect clusters, holes, or bottlenecks in the solution space.

14

• Correlate topological features with solver performance (e.g., number of conflicts,
learned clause sizes).

4. Entropy Estimation. Approximate (via sampling or Monte Carlo) the logarithm of the
number of satisfying assignments (log of SAT) to gauge the “size” of the solution space.
Evaluate whether high-entropy instances correlate with greater difficulty in practice.

9.3 Phase III: Algebraic and Logic-Based Prototyping

1. Explore Algebraic Representations. Develop prototypes that map SAT instances to:
• Polynomial systems over finite fields, using Nullstellensatz certificates and polynomial

calculus.
• Linear or semidefinite relaxations and subsequently apply rounding or cutting-plane

methods.
• Gröbner basis computations with heuristics to detect early refutations.

2. Implement Enhanced Resolution Variants. Experiment with new resolution-based
proof systems:

• Weakening the clause learning strategies (e.g., guided by algebraic or topological
invariants).

• Augmenting resolution with additional inference rules derived from structure (e.g.,
generalized clause absorption, blocked clauses elimination).

• Investigate iterative refinement: generate a sequence of formulas Φ0, Φ1, . . . where
each Φi+1 includes new constraints gleaned from partial algebraic or topological
analysis of Φi.

3. Search for Deterministic Entropy Bounds. Design algorithms that, given Φ, esti-
mate a deterministic lower bound on the number of assignments one must examine. If
this bound can be shown to be polynomially bounded in special formula families, it could
yield new algorithmic insights.

9.4 Phase IV: Machine Learning–Guided Heuristics and Hybrid Solvers

1. Train Graph Neural Networks. Use graph neural networks (GNNs) on the clause–variable
incidence graph to predict:

• Which variables are likely to appear in small backdoor sets.
• Which clauses are likely to belong to an unsatisfiable core.
• Variable assignments that maximize propagation effects.

2. Reinforcement Learning for Branching Decisions. Frame SAT solving as a sequen-
tial decision process where an agent chooses variables to assign at each step. Reward
signals can be derived from reductions in formula size or conflict frequency.

3. Hybrid Architectures. Build prototypes that integrate:
• A classical CDCL or DPLL engine.
• Neural modules that predict promising variable assignments or clause deletions.
• Algebraic subroutines that periodically analyze the formula’s ideal structure to gen-

erate additional constraints.
4. Evaluate on Benchmarks. Compare performance against state-of-the-art solvers on

standard benchmarks. Analyze whether the hybrid approach reduces average-case com-
plexity, pushes the boundary of tractable instances, or hints at structural conditions that
permit polynomial-time solving.

9.5 Phase V: Theoretical Consolidation and Complexity Bounds

1. Parameter-Tailored Complexity. For specific structural parameters (e.g., treewidth
t, backdoor size k), attempt to prove fixed-parameter tractability (FPT) results of the

15

form O(f(t) · nO(1)) or O(g(k) · nO(1)). Seek to extend these to larger parameter classes
or identify thresholds beyond which polynomial-time collapses occur.

2. Lower Bound Exploration. Attempt to strengthen known proof-complexity lower
bounds by constructing families of formulas resistant to new inference rules. Show that
no polynomial-size proofs exist in extended proof systems under plausible complexity
assumptions.

3. Conditional Impossibility Results. If no polynomial-time algorithm emerges, clarify
the barriers by proving that certain widely believed cryptographic or complexity-theoretic
assumptions (e.g., Exponential Time Hypothesis, random k-SAT hardness) imply that
SAT cannot be solved in polynomial time. Frame these results to highlight why new
paradigms—beyond relativizing or natural proofs—are required.

9.6 Phase VI: Collaborative Platform and Community Engagement

1. Open-Source Repository. Establish a public repository to host:
• Benchmark instances, along with structural and topological metadata.
• Code for algebraic, topological, and machine-learning–guided prototype solvers.
• Scripts to reproduce experiments, graphs, and results.
• Documentation of negative results to inform the community of unfruitful directions.

2. Workshops and Challenges. Organize workshops that bring together:
• Experts in proof complexity to discuss new lower bounds.
• Mathematicians specializing in algebraic geometry and topology to propose novel

SAT encodings.
• Machine learning researchers to share insights on graph-based neural models.
• Practitioners in formal methods to supply real-world benchmarks and define perfor-

mance metrics.
3. Incentivized Competitions. Create targeted challenges, such as:

• “Find a polynomial-time algorithm for SAT restricted to formulas with bounded
topological genus of the incidence graph.”

• “Identify a structural parameter that guarantees polynomial-time solvability for CNF
formulas beyond known tractable classes.”

• “Demonstrate a new proof system that yields subexponential-size refutations for
pigeonhole principle formulas.”

16

10 Conclusion
The question of whether P = NP, and in particular whether SAT admits a deterministic
polynomial-time algorithm, remains open and challenging. In this paper, we have translated and
expanded upon an Indonesian technical report into an English LaTeX document, paying special
attention to fully elaborating on SAT logic. We reviewed the definitions of Boolean formulas,
CNF, clauses, literals, resolution, and fundamental inference rules such as unit propagation
and pure literal elimination. We surveyed historical approaches—including DPLL, CDCL, ran-
domized heuristics, and algebraic methods—and explained why these methods fail to ensure
polynomial-time performance in the worst case.

We then proposed potential new paradigms, ranging from exploiting hidden structural prop-
erties to adopting geometric, topological, and algebraic frameworks. We outlined a comprehen-
sive roadmap for future research, emphasizing interdisciplinary collaboration, theoretical con-
solidation, and empirical benchmarking. Ultimately, solving SAT in deterministic polynomial
time—if possible—will require breakthroughs that transcend current barriers such as relativiza-
tion and natural proofs. Alternatively, establishing stronger impossibility results (conditional
on widely believed assumptions) could provide a clearer understanding of the inherent difficulty
of SAT.

We hope this document, with its expanded SAT logic discussion and detailed research plan,
serves as both a synthesis of known results and a stimulus for innovative approaches. The P
versus NP question stands at the heart of theoretical computer science; its resolution, in either
direction, would reshape our understanding of computation, optimization, and the limits of
algorithmic power.

References
1. Baker, T., Gill, J., & Solovay, R. (1975). “Relativizations of the P = ? NP question.” SIAM

Journal on Computing, 4(4), 431–442.
2. Cook, S. A. (1971). “The complexity of theorem-proving procedures.” In Proceedings of the

Third Annual ACM Symposium on Theory of Computing (pp. 151–158).
3. Haken, A. (1985). “The intractability of resolution.” Theoretical Computer Science, 39,

297–308.
4. Levin, L. A. (1973). “Universal sequential search problems.” Problems of Information Trans-

mission, 9(3), 265–266.
5. Marques-Silva, J. P. M., & Sakallah, K. A. (1996). “GRASP: A search algorithm for propo-

sitional logic.” In Proceedings of ICCAD (pp. 28–31).
6. Papadimitriou, C. H. (1994). Computational Complexity. Addison-Wesley.
7. Razborov, A. A., & Rudich, S. (1997). “Natural proofs.” Journal of Computer and System

Sciences, 55(1), 24–35.
8. Selsam, D., Bjørner, N., Liang, P., & Song, D. (2018). “Learning a SAT solver from single-

bit supervision.” In Proceedings of the 35th International Conference on Machine Learning
(ICML).

9. Sipser, M. (2012). Introduction to the Theory of Computation (3rd ed.). Cengage Learning.
10. Urquhart, A. (1995). “The complexity of propositional proofs.” Bulletin of Symbolic Logic,

1(4), 425–467.
11. Zhang, L., Madigan, C. F., Moskewicz, M. W., Malik, S. (2001). “Efficient conflict driven

learning in a Boolean satisfiability solver.” In Proceedings of ICCAD (pp. 279–285).

17

	Introduction
	Background on Complexity Theory
	Classes P and NP
	NP-Completeness and the Cook–Levin Theorem

	The Boolean Satisfiability Problem (SAT)
	Boolean Formulas, Literals, and Clauses
	Example of a CNF Formula

	Truth Tables and Boolean Logic
	Formal Definition of SAT
	Logical Principles in SAT
	Formalizing SAT Logic
	Complexity of SAT and NP-Completeness

	Historical Approaches to Solving SAT
	Backtracking and the DPLL Algorithm
	Conflict-Driven Clause Learning (CDCL)
	Randomized and Local Search Heuristics
	Algebraic and Reductive Approaches

	Why Existing Approaches Fail to Guarantee Polynomial Time
	Potential New Paradigms
	Exploiting Hidden Structural Properties
	Geometric and Topological Representations
	Algebraic and Symbolic Methods
	Entropy-Based and Information-Theoretic Measures
	Causal Logic Networks and Graphical Models
	Machine Learning–Guided SAT Solving

	Deep Dive into SAT Logic and Expanded Discussion
	Clause–Variable Interaction Graphs
	Resolution Proof Complexity
	Detailed Example: Unit Propagation and Conflict
	Minimal Unsatisfiable Cores and Their Structure
	Backdoor Sets and Subformula Reduction

	Required Qualities for SAT and P vs NP Research
	Exploratory Research Roadmap
	Phase I: Comprehensive Literature Reconciliation
	Phase II: Structural and Topological Analysis of SAT Instances
	Phase III: Algebraic and Logic-Based Prototyping
	Phase IV: Machine Learning–Guided Heuristics and Hybrid Solvers
	Phase V: Theoretical Consolidation and Complexity Bounds
	Phase VI: Collaborative Platform and Community Engagement

	Conclusion

