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Abstract

This report provides a detailed, pedagogical review
of Grigori Perelman’s 2002 paper, “The entropy for-
mula for the Ricci flow and its geometric applica-
tions.” We reconstruct the paper’s central arguments,
including the introduction of the entropy functional
W and the reduced volume V, and demonstrate their
monotonicity under the Ricci flow. The mathematical
derivations of key results, such as the “No Breathers”
theorem and the “No Local Collapsing” theorem,
are expanded step-by-step to be accessible to an ad-
vanced undergraduate audience. The report contex-
tualizes Perelman’s work within Richard Hamilton’s
program to prove Thurston’s Geometrization Conjec-
ture, highlighting how the entropy method provides
the crucial tools to control singularities, thereby en-
abling the Ricci flow with surgery procedure.

1 Introduction

1.1 The Geometrization Conjecture and
Hamilton’s Program

In the landscape of modern mathematics, few peaks
have stood as tall or as formidable as the classification
of three-dimensional manifolds. While the classifica-
tion of two-dimensional surfaces has been a corner-
stone of topology since the 19th century, the world
of three dimensions remained a wilderness of com-
plexity. In the late 1970s, William Thurston charted

a path through this wilderness with his revolutionary
Geometrization Conjecture. The conjecture proposed
that any compact 3-manifold can be canonically decom-
posed along spheres and tori into fundamental pieces,
each of which admits one of eight special, highly sym-
metric geometric structures (Euclidean, spherical, hy-
perbolic, and five others). If true, this would provide a
complete topological “parts list” for the universe of 3-
manifolds, subsuming the famous Poincaré Conjecture
as a special case.

The challenge was to find a tool powerful enough
to deform any given 3-manifold into its canonical geo-
metric form. In 1982, Richard S. Hamilton introduced
a candidate of profound elegance and power: the Ricci
flow (2). The Ricci flow is a geometric evolution equa-
tion that deforms the metric tensor g;; of a Riemannian
manifold over time ¢ according to the rule:

0
7 = 2R €3]
where R;; is the Ricci curvature tensor of the metric.

The equation is a geometric analogue of the heat
equation. Just as the heat equation smooths out an
uneven temperature distribution, the Ricci flow tends
to smooth out the curvature of a manifold, evolving it
towards a more uniform and symmetric state. Hamil-
ton’s program was to start with an arbitrary metric
on a 3-manifold and let the Ricci flow run; the hope
was that the metric would evolve into one of the eight
Thurston geometries, revealing the manifold’s underly-
ing topological structure.
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Hamilton achieved a spectacular initial success, prov-
ing that any closed 3-manifold admitting a metric of
positive Ricci curvature must be a spherical space form
(a quotient of the 3-sphere). This demonstrated that
the Ricci flow could indeed solve a major classification
problem and provided the crucial “proof of concept”
for the entire program.

1.2 The Challenge of Singularities

Despite its power, the Ricci flow is a highly nonlin-
ear partial differential equation, and its solutions do
not always exist for all time. The primary obstacle to
Hamilton’s program was the formation of singularities:
in a finite time 7, the curvature can blow up in certain
regions, and the flow comes to a halt.

The archetypal example of a singularity is the neck-
pinch. Imagine a manifold shaped like a dumbbell.
Under the Ricci flow, the thin cylindrical “neck” con-
necting the two bells has high positive curvature and
will contract faster than the bells. Eventually, the neck
pinches off to a point, the curvature becomes infinite,
and the classical solution ceases to exist.

To overcome this, Hamilton proposed a bold strat-
egy: Ricci flow with surgery. When a well-understood
singularity like a neck-pinch forms, one could pause
the flow, surgically excise the singular region (the thin
neck), glue on standard geometric “caps” (like the ends
of two cigars) to the new boundaries, and then restart
the flow on the resulting, topologically simpler man-
ifold. By repeating this process, one might hope to
resolve all singularities and continue the flow indefi-
nitely, eventually decomposing the manifold into its
geometric components.

However, this program stalled for nearly a decade on
a critical technical point. To perform surgery in a con-
trolled way, one needs a complete understanding of the
local geometry at the singularity. Hamilton’s analysis
showed that if one zooms in on a developing singularity
(a process called “taking a blow-up limit”), the result-
ing geometry should be an ancient solution—a Ricci
flow that has existed for all time in the past (—oo, T').
But what if, during this blow-up process, the manifold
becomes infinitesimally thin in some directions? This
phenomenon, known as local collapsing, would mean
the limiting ancient solution is degenerate, possibly
lower-dimensional, and its geometry is uncontrolled.
Without a guarantee against local collapsing, the local
structure of singularities remained a mystery, and the
surgery procedure could not be justified. This was the
“major stumbling block” that halted progress.

1.3 Perelman’s Breakthrough

In November 2002, Grigori Perelman posted a preprint
on the arXiv that provided the missing key. The paper,
“The entropy formula for the Ricci flow and its geomet-
ric applications,” introduced a stunningly original set
of ideas that resolved the problem of local collapsing

and, in doing so, laid the foundation for the completion
of Hamilton’s program (3).

Perelman’s central innovation was the discovery of
novel monotonic quantities for the Ricci flow, which
he interpreted as a form of entropy. Inspired by an
analogy with statistical mechanics and the renormal-
ization group in physics, he constructed two powerful
new tools:

1. An entropy functional W, defined on the space of
metrics, functions, and a scale parameter. Perel-
man proved that this quantity is monotonically
increasing along the Ricci flow.

2. A reduced volume V, defined for a spacetime
based at a point. This quantity, motivated by the
Bishop-Gromov volume comparison theorem, is
also monotonic.

The profound consequence of the monotonicity of
these quantities is that they provide powerful a priori
estimates that constrain the behavior of the flow. The
most important of these is the No Local Collapsing
Theorem. Perelman used the monotonicity of his W-
entropy to prove, in a remarkably short and elegant
argument, that for any Ricci flow on a closed manifold
that becomes singular in finite time, local collapsing is
impossible.

This theorem was the breakthrough. It guarantees
that the blow-up limits of singularities are always non-
degenerate, well-behaved geometric objects. For 3-
manifolds, this allowed Perelman to prove the Canon-
ical Neighborhood Theorem: any region of high cur-
vature must locally resemble either a shrinking sphere
or a shrinking cylinder. This provided the precise,
quantitative description of singularities that Hamilton’s
surgery program required. Perelman’s entropy formula
did not just clear the stumbling block; it illuminated
the entire path forward. This report will provide a
detailed, pedagogical exposition of the analytical ma-
chinery developed in that seminal paper.

2 Literature Review: The Land-
scape Before Perelman

To fully appreciate the novelty of Perelman’s work, it is
essential to understand the powerful, yet incomplete,
toolkit that existed for analyzing the Ricci flow in 2002.
This toolkit was almost entirely the creation of Richard
Hamilton, who over two decades had single-handedly
built a new field of geometric analysis.

2.1 Hamilton’s Foundational Results:
Short-Time Existence and Maxi-
mum Principles

The very first question for any evolution equation is
whether solutions exist and are unique, even for a short
time. For the Ricci flow, this is a formidable challenge
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because the equation 0:g;; = —2R;; is only weakly
parabolic. The highest-order (second) derivatives of
the metric appear in the Ricci tensor, but they do so in a
way that is degenerate due to the equation’s invariance
under diffeomorphisms (coordinate changes). In his
foundational 1982 paper, Hamilton overcame this by
employing the difficult Nash-Moser implicit function
theorem to establish short-time existence and unique-
ness for any smooth initial metric on a closed manifold.
Shortly after, Dennis DeTurck provided a much simpler
proof by introducing a clever “gauge-fixing” trick. He
showed that by coupling the Ricci flow with a specific,
time-dependent diffeomorphism, one can transform
the equation into a strictly parabolic one, for which
standard existence theorems apply.

With existence secured, Hamilton’s primary analyt-
ical tool was the maximum principle. In its simplest
form, for a scalar function u evolving by a heat-type
equation, it states that the maximum value of u can
only decrease and its minimum value can only increase.
The evolution of the scalar curvature R under Ricci flow
is given by:

%—Jf = AR+ 2|R;;|? )
where A is the Laplace-Beltrami operator and |R;;|? is
the squared norm of the Ricci tensor. Since |R;;|? > 0,
a direct application of the maximum principle shows
that miny; R(t) is a non-decreasing function of time.
This was the first hint of a monotonic quantity associ-
ated with the flow.

Hamilton’s major innovation was to extend the max-
imum principle from scalars to tensors. This allowed
him to prove that certain geometric conditions, if they
hold at time ¢ = 0, are preserved by the flow for all time.
His most celebrated results in this vein were that on a
closed manifold, positive Ricci curvature is preserved in
dimension 3, and a positive curvature operator is pre-
served in all dimensions. These “curvature-preserving”
properties were the engine behind his 1982 classifica-
tion of 3-manifolds with positive Ricci curvature.

2.2 Early Singularity Analysis and the
Problem of Collapsing

Hamilton also laid the groundwork for understanding
how singularities form. He recognized that as a flow
approaches a singular time 7', one should rescale the
geometry both in space and time by “zooming in” on
the point of highest curvature. His crucial compact-
ness theorem showed that a sequence of such rescaled
flows will converge (in a suitable sense) to a limiting
solution that is complete and has existed for all neg-
ative time—an ancient solution. This powerful result
reduced the daunting task of classifying all possible
singularity behaviors to the more focused problem of
classifying all possible ancient solutions.

However, the compactness theorem came with a cru-
cial caveat: it required a uniform lower bound on the

injectivity radius of the rescaled solutions. Geomet-
rically, this is a condition that prevents the manifold
from “collapsing” at small scales. A Ricci flow is said
to be locally collapsing at time T if there exists a se-
quence of points p; and scales r;, — 0 such that in
the ball B(pg,ri) at time t;, — T, the curvature is
bounded by rk_Q (the natural scale), but the volume of
the ball is much smaller than the Euclidean volume,
i.e., 7, "Vol(B(pk,rr)) — 0. If this happens, the blow-
up limit could be a lower-dimensional object, and the
structure of the singularity would be uncontrolled.

To constrain the geometry of singularities further,
Hamilton, and independently Thomas Ivey, proved a
remarkable pinching estimate for 3-manifolds. It states
that if the scalar curvature R is large at some point,
then the sectional curvatures at that point must be
“almost non-negative”. This was a vital piece of the
puzzle, as it severely restricted the possible geometries
of ancient solutions in dimension three. But even this
powerful estimate could not, on its own, rule out the
possibility of local collapsing. The community was left
with a clear but seemingly insurmountable obstacle:
a method was needed to guarantee a positive lower
bound on the volume of small balls in high-curvature
regions.

2.3 Physical Intuition: String Theory,
RG Flow, and Gradient Flows

A parallel line of thought, originating in theoretical
physics, provided a crucial heuristic. As Perelman him-
self notes, the Ricci flow equation appears in quantum
field theory as a one-loop approximation to the renor-
malization group (RG) flow for the two-dimensional
nonlinear o-model. In this picture, the time parameter
t of the Ricci flow corresponds to the logarithm of the
length scale. Evolving forward in time corresponds to
moving to larger distance scales (lower energy), where
the effective dynamics are obtained by “averaging over”
the short-distance (high-energy) degrees of freedom.

This physical picture strongly suggests that the Ricci
flow should be a gradient-like flow. In physics, systems
tend to evolve in a way that minimizes some energy or
action functional. The RG flow, in particular, is typically
conceptualized as a flow “downhill” on a landscape of
theories. This suggested that there ought to exist some
functional F on the space of metrics for which the Ricci
flow is the gradient flow, ;g = —grad F. If such a
functional existed, its value would be monotonic along
the flow, providing a powerful tool for controlling the
long-term behavior of the system.

Indeed, such a functional was already known in the
context of string theory. The expression F = [, (R +
|V f|?)e=FdV, where f is interpreted as the “dilaton
field,” appears as the low-energy effective action for the
string. Perelman’s first step was to take this physical
intuition and formalize it, showing precisely in what
sense the Ricci flow is a gradient flow for this functional.
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This was the starting point for his discovery of the more
powerful entropy functional W.

3 Theory and Methods: Perel-

man’s Analytical Toolkit

Perelman’s paper introduces a suite of powerful analyt-
ical tools, centered around two novel monotonic quan-
tities. This section will dissect these tools, providing
detailed derivations of the key formulas to illuminate
the mechanics behind their remarkable properties.

3.1 The First Monotonic Quantity: The
JF-Functional and Ricci Flow as a
Gradient Flow

The first step in Perelman’s analysis is to formalize the
physical intuition that Ricci flow should be a gradient
flow. He considers a functional that was known from
string theory, which couples the metric g;; to a scalar
function f (the “dilaton”).

Definition 3.1 (The F-Functional). On a closed
n-dimensional Riemannian manifold (M, g;;), for a
smooth function f : M — R, the functional F is de-
fined as:

Fgij, f) = /M(R+ IVf[2e fdv 3)

where R is the scalar curvature, |V f|? = ¢V, fV,f,
and dV is the volume element of g;;.

To understand its properties, we compute its first
variation. Let dg;; = v;; and §f = h be variations
of the metric and the function. The variations of the
geometric quantities are well-known:

e JR=—Av — le(le(’l)w)) + (Rijwij)
* A(|VFI?) = —vi; V' IV f +2(V f,Vh)
* §(dV) = FvdV, where v = g¥v;; is the trace.

Perelman’s crucial observation is to consider the
functional not on the space of all pairs (g,;, f), but
on the space of metrics g;; while keeping the measure
dm = e~/dV fixed. The condition §(dm) = 0 implies
§(efdV) = (=he=1dV) + (e7/vdV) = 0, which
means h = v/2.

Under this constraint, the second term in the varia-
tion vanishes, leaving:

(5]::/ <—Rij - Viij, vij>dm (4)
M

This reveals that the gradient of F with respect to
the L? inner product defined by the measure dm is
precisely —(R;; + V;V,f). The associated gradient
flow is therefore:

dg; j
ot

This is not quite the Ricci flow. However, the term
V.,V f is the Lie derivative of the metric along the gra-
dient vector field of f (up to a factor of 2). This means
the flow is equivalent to the standard Ricci flow com-
posed with a time-dependent diffeomorphism. This
establishes a deep connection: Ricci flow is a gradient
flow in disguise.

This structure immediately yields a monotonic quan-
tity. If we let the metric evolve by standard Ricci flow,
0:tgi; = —2R;;, and choose f at each time ¢ to be the
eigenfunction corresponding to the lowest eigenvalue
A(g(t)) of the Schrodinger operator —4A + R, then
A(g(t)) is non-decreasing in time. This provides the
first, simpler “No Breathers” result for steady or ex-
panding periodic orbits.

3.2 The Entropy Functional W

To handle the more difficult case of shrinking breathers
and to develop a tool for singularity analysis, Perelman
introduced a generalized, scale-invariant functional.

Definition 3.2 (The W-Functional). For a metric
gij, a function f, and a positive scale parameter 7 > 0,
the entropy functional W is defined by:

W(gij,f,T) = /M [T(R—|— |Vf|2) +f _n] (47TT)_n/2e_de
(6)

subject to the  normalization  constraint
f]w(47T7')7n/267de =1.

This functional is constructed to be invariant under
the parabolic scaling g;; — cg;;, t = ct, 7 — c7. The
key to its utility lies in its evolution under a specific
coupled system of equations.

The Coupled Evolution System. Consider a solution
9:j(t) to the Ricci flow. We introduce a backward time
parameter 7(t) = T —t for some reference time 7'. The
functional W becomes monotonic if f and 7 evolve

according to:

% = —2R;; (Ricci Flow) 7
dr
o . (8)
3f _ 2 n
o = AfHIVIP - R+ o ©)

The evolution equation for f is precisely the con-
dition that the weighted measure density v =
(4w7)~"/2e~1 is a solution to the conjugate heat equa-

tion, O0*u = —2% — Au+ Ru = 0.

3.2.1 Derivation of the Monotonicity Formula for
w

The central calculation of Perelman’s paper shows that

under this coupled evolution, WV is non-decreasing.
Theorem 3.1 (Monotonicity of V). Along a solu-

tion to the coupled system above, the time derivative
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of W is given by:

2

aw 1
— =2 Ry; Vif — —gij| uwdV >0
7 /MT i+ ViV;f 59| U
(10)
Since the integrand is manifestly non-negative, this

dW
proves that <3 > 0.

This monotonicity formula is Perelman’s most funda-
mental tool. It implies that if we define u(g;;,7) =
inff W(gij, f,7) (where the infimum is over func-
tions f satisfying the normalization), and v(g;;) =
inf,~o 1(gij, 7), then v(g;;(t)) is a non-decreasing func-
tion along any Ricci flow. This provides the powerful
constraint needed to rule out shrinking breathers and
prove the no-collapsing theorem.

3.3 The Second Monotonic Quantity:
The Reduced Volume V/

While the W-functional provides a powerful global tool,
Perelman introduced a second, complementary mono-
tonic quantity with a more local and geometric flavor.
It arises from a variational principle on a “spacetime”
manifold where time is treated as a spatial dimension.

3.3.1 A Spacetime Variational Principle: The £-

Length

Consider a Ricci flow g¢;;(¢) on an interval [y, 7»]. For
a path v(7) in the spacetime M X [y, 72|, its L-length
is defined as:

£ = | U AR P dr an

where R and the norm | - | are computed with the
metric g;; (7).

This functional is an “action” for paths in the space-
time M X [r1, 72]. Paths that are critical points of this
functional are called £-geodesics.

3.3.2 Reduced Distance and its Evolution

We can now define a distance-like function based on
this action.

Definition 3.4 (Reduced Distance). Fix a basepoint
(p,m1 = 0). For any point (¢, 7) in the spacetime, we
define L(q,7) as the infimum of the £-length over all
paths connecting (p,0) to (¢, 7). The reduced distance
(g, 7) is then defined as:

1
Z(Q77i) = T\/;L(q7%) (12)

The reduced distance is a dimensionless quantity
that measures the “cost” of reaching point ¢ at time
7. Perelman derived the fundamental differential in-
equalities that govern its evolution.

Theorem 3.2 (Evolution of Reduced Distance).
The reduced distance I(g, 7) satisfies the following in-
equalities:

X N4 VIP-R+ >0 (13)
ot 27
2Az—|v5|2+R+l_J§0 (14)
T

These inequalities are derived by analyzing the first
and second variations of the £-length, analogous to
the Jacobi field analysis for standard geodesics.

3.3.3 Monotonicity of the Reduced Volume

The first of these inequalities is a version of the
Hamilton-Jacobi equation and is directly related to
the conjugate heat equation. This structure leads to
the second key monotonicity formula.

Definition 3.5 (Reduced Volume). The reduced
volume based at (p,0) is a function of the backward
time 7:

V(r) = / (4mr)~"/2e~H @) gy, (15)
M

This is a weighted volume of the manifold, where
points that are “hard to reach” (large /) are exponen-
tially suppressed.

Theorem 3.3 (Monotonicity of Reduced Volume).
The reduced volume V() is a non-increasing function
of 7:

ol <0 (16)
dr

Since 7 is backward time, this means the reduced
volume is non-decreasing in forward time ¢.

This second monotonic quantity provides a power-
ful geometric tool for local analysis near a singularity,
complementing the global, statistical nature of the V-
entropy.

3.4 A Local Tool: The Differential Har-
nack Inequality from the Conjugate
Heat Equation

The final piece of Perelman’s analytical toolkit is a lo-
calized version of the W-entropy monotonicity, formu-
lated as a differential Harnack inequality. This allows
the application of maximum principle arguments in
localized regions of spacetime.

Letu = (4n(T —t))~ % e~/ be a solution to the conju-
gate heat equation [J*« = 0 on a Ricci flow background,
where 7 = T — t. Define the quantity v as:

v=T(R+|Vf*+f—-n a7

The integral of v/u over the manifold (with respect
to the measure u dV) is precisely the integrand of the
W-functional. Perelman’s key proposition describes
the evolution of v itself.
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Proposition 3.6. The quantity v satisfies the evolu-
tion equation:

2
gij USO

(18)

* 1

This result is remarkable. It says that the quan-
tity v acts as a “supersolution” to the conjugate heat
equation; it is being pushed downwards by a source
term that is always non-positive. This immediately
implies, via the maximum principle, that the quantity
min s (v/u) is non-decreasing in time ¢. This provides a
powerful, pointwise version of the entropy monotonic-
ity formula, which is essential for proving results like
the Pseudolocality Theorem, where global integration
is not feasible.

Table 1: Comparison of Perelman’s Monotonic Quantities

Feature Entropy Func- Reduced Volume
tional (W) W)

Definition Integral of 7(R + Integral of
VP +f—n  (dwr) "2

Domain Space of triples Function of back-
(gij, f,7) ward time 7

Monotonicity Non-decreasing in  Non-increasing in
forward time backward time

Primary Use Global control, no Local singularity
breathers analysis

Underlying Idea Statistical mechan- Spacetime varia-

ics analogy tional principle

4 Results and Implications: Tam-
ing Singularities in Ricci Flow

The analytical machinery developed in the previous sec-
tion is not merely an exercise in computation; it yields
profound geometric consequences that fundamentally
changed our understanding of Ricci flow. These results
provide the rigorous control over the flow’s dynamics
and its singularities that was previously missing.

4.1 A Fundamental Dynamical Property:
The “No Breathers” Theorems

A central question in any dynamical system is the na-
ture of its long-time behavior. Can solutions oscillate
or return to their initial state? In the context of Ricci
flow on the space of metrics (modulo diffeomorphisms
and scaling), such a periodic orbit is called a breather.
A fixed point is called a Ricci soliton. Breathers are
classified as steady (o = 1), expanding (« > 1), or
shrinking (« < 1), where « is the scaling factor after
one period.

Perelman’s monotonicity formulas provide a swift
and decisive answer: nontrivial breathers do not exist
on closed manifolds.

* Steady and Expanding Breathers: These are
ruled out by the monotonicity of A(g), the lowest
eigenvalue of —4A + R. For a steady breather,
Ag(t1)) = A(g(t2)), which implies the flow must
be a steady soliton between t; and ¢». A more
refined argument using a scale-invariant version
of A rules out expanding breathers as well.

* Shrinking Breathers: This is the more difficult
case and requires the full power of the W-entropy.
The proof is a beautiful argument by contradic-
tion:

1. Assume a nontrivial shrinking breather ex-
ists. This means that for some times ¢; < ¢
and scaling factor a < 1, the metric g(t2) is
isometric to ag(ty).

2. The quantity v(g(t)) = inf,>opu(g(t),7)
must be non-decreasing along the flow, so
v(g(ta)) > v(g(tr))-

3. However, the functional u(g,7) is scale-
invariant in the sense that p(ag,ar) =
w(g, 7). This implies v(ag) = v(g).

4. Combining these facts, we get v(g(t1)) =
v(ag(t1)) > v(g(t1)). This forces the mono-
tonicity to be an equality, meaning dd—‘?’ =0
throughout the interval. This implies the flow
must be a gradient shrinking soliton, not a
more general breather.

This result establishes that the Ricci flow has very
simple long-term dynamics: it either develops a sin-
gularity or converges to a Ricci soliton. There are no
complicated, oscillatory behaviors. This is a direct con-
sequence of its gradient-like nature.

4.2 The No Local Collapsing Theorem:
A Cornerstone Result

The most significant application of the WW-entropy is
the proof of the No Local Collapsing Theorem, which
resolved the main obstacle in Hamilton’s surgery pro-
gram.

Theorem 4.1 (No Local Collapsing I). Let g;;(t) be
a solution to the Ricci flow on a closed manifold M
for t € [0,T). Suppose the flow becomes singular at
time 7. Then there exists a constant x > 0 (depending
only on the initial metric and T") such that any metric
ball B(p,r) at any time ¢t € [0,T) with |[Rm| < r—2
throughout B(p, r) satisfies Vol(B(p,r)) > xr™.

This means that there exists a constant £ > 0 such
that in any region where the curvature is not too large
(bounded by the natural scale r—2), the volume cannot
collapse below the threshold xr".

4.21 Proof Sketch (using W)

The proof is an elegant argument by contradiction:
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1. Assume Local Collapsing Occurs: Suppose
there exists a sequence of collapsing balls B, =
B(p, i) at times t;, — T, with r, — 0, such that
the curvature in each ball is bounded by 7}, but
. "Vol(By) — 0.

2. Construct a Test Function: For each k, we
evaluate pu(g(ty),r3) = infr W(g(tx), f,r7). We
can get an upper bound for p by choosing a
specific test function f. Let’s choose fj to be
very large inside the small-volume ball By and
smaller outside, while satisfying the normaliza-
tion [(4nr?)~"/2e~fkdV = 1.

3. Analyze the Entropy: Because the volume of By, is
collapsing, to satisfy the normalization, e~/* must
be very large inside By, which means f; must
be very large and negative. The term (f; — n)
in the integrand of W will therefore be a large
negative number. A careful analysis shows that
this negative term dominates, and as k — oo,
we have W(g(tx), fr,r7) — —oo. This implies
p(g(ti).r3) — —oc.

4. Invoke Monotonicity: The quantity v(g(t)) =
inf;~op(g(t), ) is non-decreasing. Therefore,
v(g(tr)) > v(g(0)). However, since ¢, — T and
r, — 0, the scales 7, = ¢, + ri converge to 7.
The values u(g(ty), 77) are becoming unboundedly
negative, which forces v(g(0)) to be —oo. This is
impossible for a smooth initial metric at ¢t = 0.

5. Conclusion: The initial assumption of local col-
lapsing leads to a contradiction. Therefore, no
local collapsing can occur.

4.2.2 Geometric Significance

This theorem is the linchpin of the entire proof of the
Geometrization Conjecture. By guaranteeing that sin-
gularities are non-collapsed, it ensures that when we
take a blow-up limit at a singularity, the limit is a
non-trivial, complete, n-dimensional ancient solution.
These ancient solutions are the “singularity models.”
The theorem provides a rich geometric object to study,
rather than a degenerate, lower-dimensional one. This
opens the door to classifying these models, which is
the next step towards the Canonical Neighborhood
Theorem.

This geometric control is what enables Hamilton’s
surgery procedure to work systematically, providing
the foundation for resolving the Geometrization Con-
jecture.

4.3 The Pseudolocality Theorem

Perelman’s local Harnack inequality leads to another
profound result: the Ricci flow is “pseudolocal.” This
means that what happens in one region of the manifold
does not instantaneously affect a distant region.
Theorem 4.2 (Pseudolocality). For every a > 0,
there exist §,e > 0 such that if a region B(zg,r¢) is
initially almost Euclidean (meaning its scalar curvature

t=t2 > 11

t— Eing
Figure 1: Neck-pinch evolution

is bounded below by —r; 2 and its isoperimetric con-
stant is close to the Euclidean one), then the curvature
in a smaller, interior region B(xg, erg) cannot become
large (i.e., |[Rm| < at™! + (erg)~2) for a short time
t € (0, (erg)?].

In essence, curvature cannot “teleport.” A region
that looks flat cannot suddenly become highly curved
due to a singularity forming far away. This property is
crucial for ensuring that the local surgery procedure
is not contaminated by distant geometric events. The
proof is a highly technical argument by contradiction
that combines the local Harnack inequality with the
Gaussian logarithmic Sobolev inequality to show that a
rapid increase in curvature would violate fundamental
information-theoretic bounds.

4.4 The Canonical Neighborhood Theo-
rem in Dimension Three

The combination of the No Local Collapsing Theorem
and the Hamilton-Ivey pinching estimate provides the
foundation for the final, decisive result of the paper:
a complete geometric description of high-curvature
regions in three dimensions.

4.41 Classifying Ancient Solutions

The No Local Collapsing Theorem implies that any
singularity model must be a complete, non-collapsed
ancient solution. The Hamilton-Ivey estimate implies
that in dimension 3, such a model must have non-
negative sectional curvature. This narrows the search
considerably.

Perelman then proves a crucial structure theorem
for these solutions.

Proposition 4.3. Any non-flat, k-noncollapsed an-
cient solution to the Ricci flow in dimension 3 with
non-negative curvature operator, when “zoomed out”
(rescaled by a factor 7—! as 7 — o0), converges to a
non-flat gradient shrinking soliton.
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The gradient shrinking solitons in 3D with non-
negative curvature are completely classified: they are
the round sphere S? (and its quotients) and the round
cylinder S? x R (and its quotients). This means that
any possible singularity model must, on a large scale,
look like one of these two fundamental geometries.

4.4.2 The Structure of High-Curvature Regions

The final step is to show that these abstract models
actually appear as the local geometry in any region of
sufficiently high curvature.

Theorem 4.4 (Canonical Neighborhoods). For any
€ > 0, there is a curvature threshold R such that
if R(xo,tp) > Ry in a 3-manifold Ricci flow, then a
parabolic neighborhood of (xg, ) is, after rescaling,
e-close to a corresponding piece of either the shrinking
round sphere or the shrinking round cylinder.

This is the celebrated Canonical Neighborhood The-
orem. It says that a singularity is not a chaotic, unpre-
dictable event. Instead, any region where curvature is
becoming very large must be organizing itself into one
of two standard forms:

1. An e-neck, which is geometrically close to a piece
of the cylinder S? x R.

2. An e-cap, which is geometrically close to a piece
of the round sphere S?.

This theorem provides the exact, quantitative geo-
metric information required to perform surgery. It tells
the “surgeon” precisely what the geometry looks like in
the region to be excised and allows for the construction
of a standard procedure to remove the neck/cap and
glue in a new piece in a way that controls the geometry
of the resulting manifold.

5 Conclusion

5.1 Summary of the Paper’s Contribu-
tions

Grigori Perelman’s 2002 paper, “The entropy formula
for the Ricci flow and its geometric applications,” rep-
resents a watershed moment in geometric analysis. Its
contributions are as profound as they are elegant. The
paper introduced a new conceptual framework for un-
derstanding the Ricci flow, recasting it as a gradient-like
system governed by monotonic, entropy-like quantities.
The primary achievements of the paper are:

1. The Entropy Functional (WW): The discovery of
a novel functional whose monotonicity under a
coupled evolution provides a powerful a priori
estimate on the flow.

2. The Reduced Volume (V): The development of
a second, complementary monotonic quantity de-
rived from a spacetime variational principle, pro-
viding a tool for local geometric analysis.

3. The No Breathers Theorem: A proof, using the
monotonicity of these functionals, that the Ricci
flow exhibits simple dynamical behavior on the
space of metrics, free from non-trivial periodic
orbits.

4. The No Local Collapsing Theorem: The resolu-
tion of the most significant obstacle in Hamilton’s
program. This cornerstone result guarantees that
singularities are non-degenerate, providing well-
behaved geometric models for analysis.

5. The Canonical Neighborhood Theorem: A com-
plete, quantitative description of the local geome-
try in high-curvature regions of 3-manifolds, show-
ing they must resemble standard “necks” or “caps.”

Crucially, many of these results, particularly the en-
tropy formula and the no-collapsing theorem, are valid
in all dimensions and without any restrictive assump-
tions on the initial curvature, making them fundamen-
tal tools for the study of geometric flows in general.

5.2 The Path to Geometrization: Ricci
Flow with Surgery

While this paper does not contain the full proof of the
Geometrization Conjecture, it provides the entire an-
alytical engine required to make the proof possible.
The Canonical Neighborhood Theorem is the key that
unlocks Hamilton’s surgery procedure. As Perelman
briefly sketches in the final section of his paper, with
a complete understanding of the geometry of a devel-
oping singularity, one can devise a canonical surgery
protocol.

The high-curvature region is decomposed into necks
and caps. The necks are surgically removed, and the
resulting boundaries are sealed with standard caps.
The No Local Collapsing and Pseudolocality theorems
ensure that this local procedure is well-defined and
does not catastrophically disturb the rest of the man-
ifold. Perelman’s subsequent papers built upon this
foundation to demonstrate that this surgery process
can be carried out indefinitely, that only a finite num-
ber of surgeries are needed in any finite time inter-
val, and that the resulting flow ultimately decomposes
the 3-manifold into the geometric pieces predicted by
Thurston.

In conclusion, this single paper transformed the Ricci
flow from a promising but stalled program into a com-
plete and powerful theory capable of resolving one of
the deepest conjectures in mathematics. It stands as
a landmark of mathematical insight, combining ideas
from geometry, analysis, and theoretical physics to cre-
ate a truly revolutionary new perspective.
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6.2 Glossary of Symbols

Symbol Definition First Used
gij The metric tensor of a Riemannian mani- Sec. 1.1
fold
R;j The Ricci curvature tensor Sec. 1.1
R The scalar curvature, R = g*’/ R;; Sec. 1.1
Rm The Riemann curvature tensor Sec. 2.2
A The Laplace-Beltrami operator Sec. 2.1
t The time parameter for the Ricci flow Sec. 1.1
T A finite time at which a singularity may  Sec. 1.2
form
M A smooth manifold, typically closed Sec. 3.1
n The dimension of the manifold M Sec. 3.1
f A smooth scalar function, the “dilaton” Sec. 3.1
av The volume element associated with g; ; Sec. 3.1
F Perelman’s first functional Sec. 3.1
A(g) The lowest eigenvalue of —4A + R Sec. 3.1
T A backward time and scale parameter Sec. 3.2
w Perelman’s entropy functional Sec. 3.2
u The density (477)~"/2e~F Sec. 3.2
o The conjugate heat operator Sec. 3.2
w(g, ) The infimum of W(g, f, ) Sec. 3.2
v(g) The infimum of (g, 7) overall = > 0 Sec. 3.2
L(v) The L-length of a spacetime path Sec. 3.3
L(q,7) The minimal £-length from basepoint Sec. 3.3
(g, T) The reduced distance, L(q, 7)/(2v/T) Sec. 3.3
V() The reduced volume at time 7 Sec. 3.3
K A non-collapsing constant Sec. 4.2
6.3 FAQ

Q1: What is a “tensor”? Think of a tensor as a gener-
alization of concepts you already know. A scalar (like
temperature) is a rank-0 tensor: just a number. A vec-
tor (like velocity) is a rank-1 tensor: a magnitude and
a direction. A matrix can represent a rank-2 tensor
(like the metric g;;), which takes two vectors and gives
a number (their inner product). The Ricci tensor R;;
is also a rank-2 tensor that describes how the volume
of a small ball in the manifold differs from a ball in flat
Euclidean space.

Q2: Why is the Ricci flow called a “flow”? The
term “flow” comes from the analogy with physics. Imag-
ine a distribution of heat in a metal bar. The heat
equation describes how the temperature at each point
changes over time, causing heat to “flow” from hot
regions to cold regions until it’s evenly distributed. The
Ricci flow does something similar for geometry. The
“thing” that is flowing is the metric itself. The equation
0igi; = —2R;; means that parts of the manifold with
positive Ricci curvature (which are “hotter” or more
curved than average in a certain sense) tend to shrink,
while parts with negative curvature tend to expand.
The metric “flows” towards a more uniform geometric
state.

Q3: What does “monotonicity” mean and why is
it so important? In mathematics and physics, a mono-
tonic quantity is one that only ever changes in one
direction—it only increases or only decreases. A classic
example from physics is entropy in a closed system,
which (by the second law of thermodynamics) can only
increase. Monotonic quantities are incredibly powerful
because they act as one-way gates for the evolution
of a system. If you know a quantity must always in-
crease, you know the system can never return to a state
where that quantity was smaller. Perelman’s discovery
that his W-entropy is monotonic under Ricci flow was
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revolutionary because it provided a powerful, previ-
ously unknown constraint on how the geometry could
evolve. It forbids certain behaviors (like “breathers”)
and guarantees others (like “no local collapsing”).

Q4: What is the difference between “collapsing”
and “shrinking”? These terms describe two differ-
ent ways a manifold can become small. Shrinking is a
global process where the entire manifold scales down
uniformly, like a balloon deflating. The shape stays
the same, but the size gets smaller. A round sphere
under Ricci flow shrinks to a point. Collapsing is a lo-
cal process where the manifold becomes degenerate in
dimension. Imagine squashing a soda can. Its volume
goes to zero, but its height and circumference do not.
It becomes almost 2-dimensional. In Ricci flow, local
collapsing would mean a small 3D region of the mani-
fold becomes almost 2D or 1D, even while its curvature
remains bounded at that scale. Perelman’s theorem
proves this doesn’t happen in finite-time singularities
on closed manifolds.

Q5: Why is this called an “entropy” formula?
Perelman named it an entropy formula because of its
deep connection to thermodynamics and information
theory. In physics, entropy measures the amount of
disorder or “missing information” in a system. For ex-
ample, a hot gas has higher entropy than a cold one
because the molecules are moving more chaotically.
Similarly, Perelman’s W functional can be viewed as
measuring the geometric “disorder” of a manifold. The
key insight is that this geometric entropy is monotonic
along the Ricci flow—it can only increase, just like
physical entropy in an isolated system. This mono-
tonic behavior acts as a fundamental law governing
the flow, preventing chaotic or pathological behavior
and ensuring that the geometry evolves in a controlled,
predictable way.

Q6: What makes this a “physics-inspired” ap-
proach? Perelman drew inspiration from quantum
field theory and statistical mechanics. The Ricci flow
equation appears naturally in string theory as a “renor-
malization group flow”—an equation describing how
the effective physics changes as you look at the system
at different length scales. The entropy functional W is
analogous to the free energy in thermodynamics, and
its monotonicity is reminiscent of the second law of
thermodynamics. This cross-pollination between pure
mathematics and theoretical physics led to insights that
might not have emerged from a purely mathematical
approach. It demonstrates how physical intuition can
guide mathematical discovery.

Q7: How does this connect to the Poincaré Con-
jecture? The Poincaré Conjecture asks: if you have a
3-dimensional space where every loop can be continu-
ously shrunk to a point (the technical term is “simply
connected”), must that space be topologically equiva-
lent to the 3-sphere? Perelman’s strategy was to start
with such a space, put an arbitrary metric on it, and
run the Ricci flow with surgery. The entropy meth-
ods guarantee that the surgery can be carried out in

a controlled way. Eventually, the flow should smooth
out the geometry and eliminate all the complicated
topology through surgery, leaving only pieces with the
eight standard Thurston geometries. But for a sim-
ply connected 3-manifold, the only possibility is that
it becomes a round 3-sphere, proving it was always
topologically a 3-sphere to begin with.

Q8: What is a “singularity” in this context? A
singularity in Ricci flow is a point in space and time
where the curvature becomes infinite. Think of it
like this: imagine you're inflating a balloon that has
a weak spot. The weak spot will stretch faster and
thinner until it eventually pops. In Ricci flow, certain
regions of the manifold can develop extremely high
curvature very quickly until the mathematical descrip-
tion breaks down. Before Perelman, these singularities
were viewed as disasters that stopped the flow. Perel-
man’s breakthrough was showing that these singulari-
ties are highly controlled and predictable—they always
look like either a shrinking sphere or a shrinking cylin-
der. This control allows mathematicians to “perform
surgery” on the manifold: cut out the singular region
and glue in a standard piece, then restart the flow.

Q9: Why is this considered one of the greatest
mathematical achievements? Perelman’s work re-
solved not just one, but an entire family of fundamental
questions about the structure of 3-dimensional spaces
that had puzzled mathematicians for over a century.
The Poincaré Conjecture was one of the seven “Millen-
nium Prize Problems,” each worth $1 million. More
broadly, his techniques revolutionized our understand-
ing of geometric flows and opened up entirely new
areas of research. The work demonstrates the deep
unity between geometry, analysis, and physics, show-
ing how insights from one field can unlock problems in
another. It stands as a testament to the power of math-
ematical creativity and cross-disciplinary thinking.
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